Noise control for molecular computing

Tomislav Plesa, Konstantinos Zygalakis, David F. Anderson, Radek Erban

Research output: Contribution to journalArticlepeer-review


Synthetic biology is a growing interdisciplinary field, with far-reaching applications, which aims to design biochemical systems that behave in a desired manner. With the advancement in nucleic-acid-based technology in general, and strand-displacement DNA computing in particular, a large class of abstract biochemical networks may be physically realized using nucleic acids. Methods for systematic design of the abstract systems with prescribed behaviors have been predominantly developed at the (less-detailed) deterministic level. However, stochastic effects, neglected at the deterministic level, are increasingly found to play an important role in biochemistry. In such circumstances, methods for controlling the intrinsic noise in the system are necessary for a successful network design at the (more-detailed) stochastic level. To bridge the gap, the
noise-control algorithm for designing biochemical networks is developed in this paper. The algorithm structurally modifies any given reaction network under mass-action kinetics, in such a way that (i) controllable state-dependent noise is introduced into the stochastic dynamics, while (ii) the deterministic dynamics are preserved. The capabilities of the algorithm are demonstrated on a production-decay reaction system, and on an exotic system displaying bistability. For the
production-decay system, it is shown that the algorithm may be used to redesign the network to achieve noise-induced multistability. For the exotic system, the algorithm is used to redesign the network to control the stochastic switching, and achieve noise-induced oscillations.
Original languageEnglish
Number of pages10
JournalJournal of the Royal Society, Interface
Issue number144
Publication statusPublished - Jul 2018

Fingerprint Dive into the research topics of 'Noise control for molecular computing'. Together they form a unique fingerprint.

Cite this