Non-existence of solutions for the periodic cubic NLS below L^2

Tadahiro Oh, Zihua Guo

Research output: Contribution to journalArticlepeer-review

Abstract

We prove non-existence of solutions for the cubic nonlinear Schrödinger equation (NLS) on the circle if initial data belong to H^s(핋)\setminus L^2(핋) for some s∈(−1/8,0). The proof is based on establishing an a priori bound on solutions to a renormalized cubic NLS in negative Sobolev spaces via the short time Fourier restriction norm method.
Original languageEnglish
Pages (from-to)1656-1729
Number of pages74
JournalInternational Mathematics Research Notices
Volume2018
Issue number6
Early online date26 Dec 2016
DOIs
Publication statusPublished - 20 Mar 2018

Keywords

  • nonlinear Schrödinger equation
  • well-posedness
  • ill-posedness
  • short time Fourier restriction norm method
  • a priori estimate
  • normal form reduction

Fingerprint

Dive into the research topics of 'Non-existence of solutions for the periodic cubic NLS below L^2'. Together they form a unique fingerprint.

Cite this