Projects per year
Abstract / Description of output
Nonlinear (large amplitude) vibrations of thin elastic plates can exhibit strongly nonlinear regimes characterized by a broadband Fourier spectrum and a cascade of energy from the large to the small wavelengths. This particular regime can be properly described within the framework of wave turbulence theory. The dynamics of the local kinetic energy spectrum is here investigated numerically with a finite difference, energyconserving scheme, for a simplysupported rectangular plate excited pointwise and harmonically.
Damping is not considered so that energy is left free to cascade until the highest simulated frequency is reached. The framework of nonstationary wave turbulence is thus appropriate to study quantitatively the numerical results. In particular, numerical simulations show the presence of a front propagating to high frequencies, leaving a steady spectrum in its wake, which has the property of being selfsimilar. When a finite amount of energy is given at initial state to the plate which is then left free to vibrate, the spectra are found to be in perfect accordance with the logcorrection theoretically predicted. When forced vibrations are considered so that energy is continuously fed into the plate, a slightly steeper slope is observed in the lowfrequency range of the spectrum. It is concluded that the pointwise forcing introduces an anisotropy that have an influence on the slope of the power spectrum, hence explaining one of the discrepancies reported in experimental studies.
Damping is not considered so that energy is left free to cascade until the highest simulated frequency is reached. The framework of nonstationary wave turbulence is thus appropriate to study quantitatively the numerical results. In particular, numerical simulations show the presence of a front propagating to high frequencies, leaving a steady spectrum in its wake, which has the property of being selfsimilar. When a finite amount of energy is given at initial state to the plate which is then left free to vibrate, the spectra are found to be in perfect accordance with the logcorrection theoretically predicted. When forced vibrations are considered so that energy is continuously fed into the plate, a slightly steeper slope is observed in the lowfrequency range of the spectrum. It is concluded that the pointwise forcing introduces an anisotropy that have an influence on the slope of the power spectrum, hence explaining one of the discrepancies reported in experimental studies.
Original language  English 

Title of host publication  Proceedings of the European Nonlinear Dynamics Conference 
Number of pages  2 
Publication status  Published  Jul 2014 
Event  ENOC 2014  Vienna, Austria Duration: 6 Jul 2014 → 11 Jul 2014 
Conference
Conference  ENOC 2014 

Country/Territory  Austria 
City  Vienna 
Period  6/07/14 → 11/07/14 
Fingerprint
Dive into the research topics of 'Nonstationary wave turbulence in elastic plates: a numerical investigation'. Together they form a unique fingerprint.Projects
 1 Finished

NESS  Listening to the future: Nextgeneration Sound Synthesis through Simulation
1/01/12 → 31/12/16
Project: Research