Projects per year
Abstract / Description of output
Developing robot controllers capable of achieving dexterous nonprehensile manipulation, such as pushing an object on a table, is challenging. The underactuated and hybrid-dynamics nature of the problem, further complicated by the uncertainty resulting from the frictional interactions, requires sophisticated control behaviors. Reinforcement Learning (RL) is a powerful framework for developing such robot controllers. However, previous RL literature addressing the nonprehensile pushing task achieves low accuracy, non-smooth trajectories, and only simple motions, i.e. without rotation of the manipulated object. We conjecture that previously used unimodal exploration strategies fail to capture the inherent hybrid-dynamics of the task, arising from the different possible contact interaction modes between the robot and the object, such as sticking, sliding, and separation. In this work, we propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies for arbitrary starting and target object poses, i.e. positions and orientations, and with improved accuracy. We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers. Furthermore, we validate the transferability of the learned policies, trained entirely in simulation, to a physical robot hardware using the KUKA iiwa robot arm. See our supplemental video: https://youtu.be/vTdva1mgrk4.
Original language | English |
---|---|
Title of host publication | 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) |
Publisher | Institute of Electrical and Electronics Engineers |
Pages | 5606-5613 |
Number of pages | 8 |
ISBN (Electronic) | 978-1-6654-9190-7 |
ISBN (Print) | 978-1-6654-9191-4 |
DOIs | |
Publication status | Published - 13 Dec 2023 |
Event | 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States Duration: 1 Oct 2023 → 5 Oct 2023 https://ieee-iros.org/ |
Publication series
Name | Proceedings of the International Conference on Intelligent Robots and Systems |
---|---|
Publisher | IEEE |
ISSN (Print) | 2153-0858 |
ISSN (Electronic) | 2153-0866 |
Conference
Conference | 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 |
---|---|
Abbreviated title | IROS 2023 |
Country/Territory | United States |
City | Detroit |
Period | 1/10/23 → 5/10/23 |
Internet address |
Fingerprint
Dive into the research topics of 'Nonprehensile Planar Manipulation through Reinforcement Learning with Multimodal Categorical Exploration'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Non-prehensile Manipulation with Admittance Control on Nextage Open robot
1/01/23 → 30/09/23
Project: Research
-
HARMONY: Enhancing Healthcare with Assistive Robotic Mobile Manipulation
Vijayakumar, S., Ivan, V., Khadem, M. & Li, Z.
1/01/21 → 30/06/24
Project: Research