Projects per year
Abstract / Description of output
We present an in-depth comparison of three clinical information extraction (IE) systems designed to perform entity recognition and negation detection on brain imaging reports: EdIE-R, a bespoke rule-based system, and two neural network models, EdIE-BiLSTM and EdIE-BERT, both multi-task learning models with a BiLSTM and BERT encoder respectively. We compare our models both on an in-sample and an out-of-sample dataset containing mentions of stroke findings and draw on our error analysis to suggest improvements for effective annotation when building clinical NLP models for a new domain. Our analysis finds that our rule-based system outperforms the neural models on both datasets and seems to generalise to the out-of-sample dataset. On the other hand, the neural models do not generalise negation to the out-of-sample dataset, despite metrics on the in-sample dataset suggesting otherwise.
Original language | English |
---|---|
Title of host publication | Proceedings of the 11th International Workshop on Health Text Mining and Information Analysis |
Publisher | Association for Computational Linguistics |
Pages | 24–37 |
Number of pages | 14 |
ISBN (Print) | 978-1-952148-81-1 |
Publication status | Published - 20 Nov 2020 |
Event | The 11th International Workshop on Health Text Mining and Information Analysis at EMNLP 2020 - Online Workshop Duration: 20 Nov 2020 → 20 Nov 2020 |
Workshop
Workshop | The 11th International Workshop on Health Text Mining and Information Analysis at EMNLP 2020 |
---|---|
Abbreviated title | LOUHI 2020 |
City | Online Workshop |
Period | 20/11/20 → 20/11/20 |
Fingerprint
Dive into the research topics of 'Not a cute stroke: Analysis of Rule- and Neural Network-based Information Extraction Systems for Brain Radiology Reports'. Together they form a unique fingerprint.Projects
- 4 Finished
-
Large-Scale and Robust Text Mining of Electronic Healthcare Records
1/11/18 → 31/08/21
Project: Research
-