TY - JOUR
T1 - Novelty-Related fMRI Responses of Precuneus and Medial Temporal Regions in Individuals at Risk for Alzheimer Disease
AU - DELCODE study group
AU - Billette, Ornella V
AU - Ziegler, Gabriel
AU - Aruci, Merita
AU - Schütze, Hartmut
AU - Kizilirmak, Jasmin M
AU - Richter, Anni
AU - Altenstein, Slawek
AU - Bartels, Claudia
AU - Brosseron, Frederic
AU - Cardenas-Blanco, Arturo
AU - Dahmen, Philip
AU - Dechent, Peter
AU - Dobisch, Laura
AU - Fliessbach, Klaus
AU - Freiesleben, Silka Dawn
AU - Glanz, Wenzel
AU - Göerß, Doreen
AU - Haynes, John Dylan
AU - Heneka, Michael T
AU - Kilimann, Ingo
AU - Kimmich, Okka
AU - Kleineidam, Luca
AU - Laske, Christoph
AU - Lohse, Andrea
AU - Rostamzadeh, Ayda
AU - Metzger, Coraline
AU - Munk, Matthias H
AU - Peters, Oliver
AU - Preis, Lukas
AU - Priller, Josef
AU - Scheffler, Klaus
AU - Schneider, Anja
AU - Spottke, Annika
AU - Spruth, Eike Jakob
AU - Ramirez, Alfredo
AU - Röske, Sandra
AU - Roy, Nina
AU - Teipel, Stefan
AU - Wagner, Michael
AU - Wiltfang, Jens
AU - Wolfsgruber, Steffen
AU - Yakupov, Renat
AU - Zeidman, Peter
AU - Jessen, Frank
AU - Schott, Björn H
AU - Düzel, Emrah
AU - Maass, Anne
N1 - Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
PY - 2022/6/3
Y1 - 2022/6/3
N2 - BACKGROUND AND OBJECTIVES: We assessed whether novelty-related fMRI activity in medial temporal lobe regions and the precuneus follows an inverted U-shaped pattern across the clinical spectrum of increased Alzheimer disease (AD) risk as previously suggested. Specifically, we tested for potentially increased activity in individuals with a higher AD risk due to subjective cognitive decline (SCD) or mild cognitive impairment (MCI). We further tested whether activity differences related to diagnostic groups were accounted for by CSF markers of AD or brain atrophy.METHODS: We studied 499 participants aged 60-88 years from the German Center for Neurodegenerative Diseases Longitudinal Cognitive Impairment and Dementia Study (DELCODE) who underwent task-fMRI. Participants included 163 cognitively normal (healthy control, HC) individuals, 222 SCD, 82 MCI, and 32 patients with clinical diagnosis of mild AD. CSF levels of β-amyloid 42/40 ratio and phosphorylated-tau181 were available from 232 participants. We used region-based analyses to assess novelty-related activity (novel > highly familiar scenes) in entorhinal cortex, hippocampus, and precuneus as well as whole-brain voxel-wise analyses. First, general linear models tested differences in fMRI activity between participant groups. Complementary regression models tested quadratic relationships between memory impairment and activity. Second, relationships of activity with AD CSF biomarkers and brain volume were analyzed. Analyses were controlled for age, sex, study site, and education.RESULTS: In the precuneus, we observed an inverted U-shaped pattern of novelty-related activity across groups, with higher activity in SCD and MCI compared with HC, but not in patients with AD who showed relatively lower activity than MCI. This nonlinear pattern was confirmed by a quadratic relationship between memory impairment and precuneus activity. Precuneus activity was not related to AD biomarkers or brain volume. In contrast to the precuneus, hippocampal activity was reduced in AD dementia compared with all other groups and related to AD biomarkers.DISCUSSION: Novelty-related activity in the precuneus follows a nonlinear pattern across the clinical spectrum of increased AD risk. Although the underlying mechanism remains unclear, increased precuneus activity might represent an early signature of memory impairment. Our results highlight the nonlinearity of activity alterations that should be considered in clinical trials using functional outcome measures or targeting hyperactivity.
AB - BACKGROUND AND OBJECTIVES: We assessed whether novelty-related fMRI activity in medial temporal lobe regions and the precuneus follows an inverted U-shaped pattern across the clinical spectrum of increased Alzheimer disease (AD) risk as previously suggested. Specifically, we tested for potentially increased activity in individuals with a higher AD risk due to subjective cognitive decline (SCD) or mild cognitive impairment (MCI). We further tested whether activity differences related to diagnostic groups were accounted for by CSF markers of AD or brain atrophy.METHODS: We studied 499 participants aged 60-88 years from the German Center for Neurodegenerative Diseases Longitudinal Cognitive Impairment and Dementia Study (DELCODE) who underwent task-fMRI. Participants included 163 cognitively normal (healthy control, HC) individuals, 222 SCD, 82 MCI, and 32 patients with clinical diagnosis of mild AD. CSF levels of β-amyloid 42/40 ratio and phosphorylated-tau181 were available from 232 participants. We used region-based analyses to assess novelty-related activity (novel > highly familiar scenes) in entorhinal cortex, hippocampus, and precuneus as well as whole-brain voxel-wise analyses. First, general linear models tested differences in fMRI activity between participant groups. Complementary regression models tested quadratic relationships between memory impairment and activity. Second, relationships of activity with AD CSF biomarkers and brain volume were analyzed. Analyses were controlled for age, sex, study site, and education.RESULTS: In the precuneus, we observed an inverted U-shaped pattern of novelty-related activity across groups, with higher activity in SCD and MCI compared with HC, but not in patients with AD who showed relatively lower activity than MCI. This nonlinear pattern was confirmed by a quadratic relationship between memory impairment and precuneus activity. Precuneus activity was not related to AD biomarkers or brain volume. In contrast to the precuneus, hippocampal activity was reduced in AD dementia compared with all other groups and related to AD biomarkers.DISCUSSION: Novelty-related activity in the precuneus follows a nonlinear pattern across the clinical spectrum of increased AD risk. Although the underlying mechanism remains unclear, increased precuneus activity might represent an early signature of memory impairment. Our results highlight the nonlinearity of activity alterations that should be considered in clinical trials using functional outcome measures or targeting hyperactivity.
KW - Alzheimer Disease/diagnosis
KW - Amyloid beta-Peptides
KW - Biomarkers
KW - Cognitive Dysfunction/diagnostic imaging
KW - Humans
KW - Magnetic Resonance Imaging/methods
KW - Parietal Lobe/diagnostic imaging
KW - Temporal Lobe/diagnostic imaging
U2 - 10.1212/WNL.0000000000200667
DO - 10.1212/WNL.0000000000200667
M3 - Article
C2 - 35995589
SN - 0028-3878
VL - 99
SP - e775-e788
JO - Neurology
JF - Neurology
IS - 8
ER -