Abstract
This study presents numerical results for critical ventilation velocity and smoke movement for fires in different transverse positions in curved tunnels. The highest critical velocity is observed for a fire positioned next to the convex wall in a curved tunnel where the critical velocity is 16% higher than a fire located centrally in the same curved tunnel which has a curvature radius of 600 m. Critical velocity is observed to vary slightly with curvature, being 7% larger in a 400 m radius tunnel compared to a fire in a straight tunnel. This could be attributed to generally lower speed flows near the convex wall in curved tunnels, and this effect diminishes with larger curve radii. As a consequence, higher smoke temperatures at the ceiling are found for fires near the convex wall in curved tunnels, and tunnel ventilation speed has to be increased to prevent the smoke back-layering in curved tunnels. Additionally, three regimes of back-layering length are concluded for the transverse fire locations in this paper. The first is for a fire next to the tunnel wall, where the back-layering length increases slowly as the air speed tends to be lower than the critical velocity, followed by a rapid rise. Secondly, as a fire moving away from the wall, the back-layering length increases at a gentle gradient. The back-layering length is shortest in this circumstance. A fire in the middle lane and a fire in the lane near convex wall are considered as regime 3. The back-layering length evolution is steepest. Here the back-layering length increases significantly as the tunnel curve radius decreases for the same air speed.
Original language | English |
---|---|
Pages (from-to) | 1-7 |
Journal | Tunnelling and Underground Space Technology |
Volume | 67 |
Early online date | 27 Apr 2017 |
DOIs | |
Publication status | Published - 2017 |
Keywords / Materials (for Non-textual outputs)
- curved tunnels
- tunnel fire
- critical velocity
- smoke movement