Abstract / Description of output
Quadratic programs with box constraints involve minimizing a possibly nonconvex quadratic function subject to lower and upper bounds on each variable. This is a well-known NP-hard problem that frequently arises in various applications. We focus on two convex relaxations, namely the reformulation–linearization technique (RLT) relaxation and the SDP-RLT relaxation obtained by combining the Shor relaxation with the RLT relaxation. Both relaxations yield lower bounds on the optimal value of a quadratic program with box constraints. We show that each component of each vertex of the RLT relaxation lies in the set {0,12,1}. We present complete algebraic descriptions of the set of instances that admit exact RLT relaxations as well as those that admit exact SDP-RLT relaxations. We show that our descriptions can be converted into algorithms for efficiently constructing instances with (1) exact RLT relaxations, (2) inexact RLT relaxations, (3) exact SDP-RLT relaxations, and (4) exact SDP-RLT but inexact RLT relaxations. Our preliminary computational experiments illustrate that our algorithms are capable of generating computationally challenging instances for state-of-the-art solvers.
Original language | English |
---|---|
Number of pages | 33 |
Journal | Journal of Global Optimization |
Early online date | 30 May 2024 |
DOIs | |
Publication status | E-pub ahead of print - 30 May 2024 |