Abstract
We consider for the first time available bandwidth estimation (ABE) in the context of 802.11n, which is fast replacing the legacy 802.11a/b/g networks. We experimentally show that the frame aggregation (FA) feature of 802.11n is the dominant one among 802.11n features affecting the ABE. Using an indoor 802.11n wireless testbed, we compare three ABE tools (WBest, DietTopp and pathChirp) in various cross-traffic scenarios. We find that FA significantly hurts the accuracy of all ABE tools; DietTopp and pathChirp are relatively more robust than WBest. Because faster available bandwidth estimation and less intrusiveness are desirable properties of any ABE tool and WBest satisfies them relatively better than the other two tools, we conduct an in-depth investigation into the harmful effect of FA on ABE using WBest. This in turn led us to come up with two key design principles to counter FA effects: (1) treating aggregated probes as one jumbo probe; and (2) generating a larger number of probes. We then develop an enhanced version of WBest termed WBest+ that incorporates these principles. Our evaluation shows that the new version is effective in achieving accurate ABE in the presence of FA.
Original language | English |
---|---|
Title of host publication | Sensing, Communication, and Networking (SECON), 2014 Eleventh Annual IEEE International Conference on |
Pages | 108-116 |
Number of pages | 9 |
DOIs | |
Publication status | Published - 1 Jun 2014 |
Keywords
- Accuracy
- Bandwidth
- Estimation
- IEEE 802.11n Standard
- Probes
- Wireless communication