Abstract
In this article under assumption of "small" density for negativity set, we prove local Lipschitz regularity for the one phase minimization problem with free boundary for the functional $$\mathcal E_p(v,\Omega)=\int_\Omega|\nabla v|^p+\lambda^p_1\X{u\leq0}+\lambda^p_2\X{u>0},\hspace{3mm} 1
Original language | English |
---|---|
Pages (from-to) | 79-86 |
Number of pages | 8 |
Journal | Interfaces and Free Boundaries |
Volume | 10 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2008 |