Projects per year
Abstract / Description of output
Effective collaboration is based on online adaptation of one’s own actions to the actions of their partner. This article provides a principled formalism to address online adaptation in joint planning problems such as Dyadic collaborative Manipulation (DcM) scenarios. We propose an efficient bilevel formulation which combines graph search methods with trajectory optimization, enabling robotic agents to adapt their policy on-the-fly in accordance to changes of the dyadic task. This method is the first to empower agents with the ability to plan online in hybrid spaces; optimizing over discrete contact locations, contact sequence patterns, continuous trajectories, and force profiles for co-manipulation tasks. This is particularly important in large object co-manipulation that requires changes of graspholds and plan adaptation. We demonstrate in simulation and with robot experiments the efficacy of the bilevel optimization by investigating the effect of robot policy changes in response to real-time alterations of the dyadic goals, eminent grasp switches, as well as optimal dyadic interactions to realize the joint task.
Original language | English |
---|---|
Pages (from-to) | 1452 - 1471 |
Number of pages | 20 |
Journal | IEEE Transactions on Robotics |
Volume | 36 |
Issue number | 5 |
Early online date | 13 Aug 2020 |
DOIs | |
Publication status | Published - 1 Oct 2020 |
Keywords / Materials (for Non-textual outputs)
- Physical Human-Robot Interaction
- Optimization and Optimal Control
- Manipulation Planning
- ual Arm Manipulation
Fingerprint
Dive into the research topics of 'Online Hybrid Motion Planning for Dyadic Collaborative Manipulation via Bilevel Optimization'. Together they form a unique fingerprint.Projects
- 2 Finished
-
UK Robotics and Artificial Intelligence Hub for Offshore Energy Asset Integrity Management (ORCA)
Vijayakumar, S., Mistry, M., Ramamoorthy, R. & Williams, C.
1/10/17 → 31/03/22
Project: Research
-
Learning Robotic Motor Skills, Visual Control and Perception for Warehouse Automation
1/04/17 → 31/12/20
Project: Research