Projects per year
Abstract / Description of output
We propose a hybrid model for automatically acquiring a policy for a complex game, which combines online learning with mining knowledge from a corpus of human game play. Our hypothesis is that a player that learns its policies
by combining (online) exploration with biases towards human behaviour that’s attested in a corpus of humans playing the game will outperform any agent that uses only one of the knowledge sources. During game play, the agent extracts similar moves made by players in the corpus in similar situations, and
approximates their utility alongside other possible options by performing simulations from its current state. We implement and assess our model in an agent playing the complex win-lose board game Settlers of Catan, which lacks an implementation that would challenge a human expert. The results from the preliminary set of experiments illustrate the potential of such a joint model.
Original language | English |
---|---|
Title of host publication | Computational Intelligence and Games (CIG), 2015 IEEE Conference on |
Publisher | Institute of Electrical and Electronics Engineers |
Pages | 60-67 |
Number of pages | 8 |
ISBN (Print) | 978-1-4799-8621-7 |
DOIs | |
Publication status | Published - 2015 |
Fingerprint
Dive into the research topics of 'Online learning and mining human play in complex games'. Together they form a unique fingerprint.Projects
- 1 Finished
Profiles
-
Alex Lascarides
- School of Informatics - Personal Chair in Semantics
- Institute of Language, Cognition and Computation
Person: Academic: Research Active