Open-world Person Re-Identification by Multi-Label Assignment Inference

Brais Cancela, Timothy M. Hospedales, Shaogang Gong

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Person re-identification methods have recently made tremendous progress on maximizing re-identification accuracy between camera pairs. However, this line of work mostly shares an critical limitation - it assumes re-identification in a `closed world'. That is, between a known set of people who all appear in both views of a single pair of cameras. This is clearly far from a realistic application scenario. In this study, we take a significant step toward a more realistic `open world' scenario. We consider associating persons observed in more than two cameras where: multiple within-camera detections are possible; different people can transit between different cameras -- so that there is only partial and unknown overlap of identity between people observed by each camera; and the total number of unique people among all cameras is itself unknown. To address this significantly more challenging open world scenario, we propose a novel framework based on online Conditional Random Field (CRF) inference. Experiments demonstrate the robustness of our approach in contrast to the limitations of conventional approaches in the open world context.
Original languageEnglish
Title of host publicationBritish Machine Vision Conference, BMVC 2014, Nottingham, UK, September 1-5, 2014
PublisherBMVA Press
Number of pages11
Publication statusPublished - 2014


Dive into the research topics of 'Open-world Person Re-Identification by Multi-Label Assignment Inference'. Together they form a unique fingerprint.

Cite this