Optimized Auxiliary Particle Filters: adapting mixture proposals via convex optimization

Nicola Branchini, Victor Elvira

Research output: Contribution to conferencePaperpeer-review

Abstract / Description of output

Auxiliary particle filters (APFs) are a class of sequential Monte Carlo (SMC) methods for Bayesian inference in state-space models. In their original derivation, APFs operate in an extended state space using an auxiliary variable to improve inference. In this work, we propose optimized auxiliary particle filters, a framework where the traditional APF auxiliary variables are interpreted as weights in an importance sampling mixture proposal. Under this interpretation, we devise a mechanism for proposing the mixture weights that is inspired by recent advances in multiple and adaptive importance sampling. In particular, we propose to select the mixture weights by formulating a convex optimization problem, with the aim of approximating the filtering posterior at each timestep. Further, we propose a weighting scheme that generalizes previous results on the APF (Pitt et al. 2012), proving unbiasedness and consistency of our estimators. Our framework demonstrates significantly improved estimates on a range of metrics compared to state-of-the-art particle filters at similar computational complexity in challenging and widely used dynamical models.
Original languageEnglish
Number of pages20
Publication statusPublished - 12 May 2021
EventConference on Uncertainty in Artificial Intelligence (UAI) -
Duration: 27 Jul 202129 Jul 2021

Conference

ConferenceConference on Uncertainty in Artificial Intelligence (UAI)
Period27/07/2129/07/21

Fingerprint

Dive into the research topics of 'Optimized Auxiliary Particle Filters: adapting mixture proposals via convex optimization'. Together they form a unique fingerprint.

Cite this