Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model

K. Alexander, M. Chang, E. Maylin, T. Kohler, R. Muller, A. Wu, N. Van Rooijen, M. Sweet, D. Hume, L. Raggatt, A. Pettit

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Bone-lining tissues contain a population of resident macrophages termed osteomacs, which interact with osteoblasts in vivo and control mineralization in vitro. The role of osteomacs in bone repair was investigated using a mouse tibial bone injury model that heals primarily through intramembranous ossification and progresses through all major phases of stabilized fracture repair. Immunohistochemical studies revealed that at least two macrophage populations, F4/80(+) Mac2(-/low) TRAP(-) osteomacs and F4/80(+) Mac2(hi) TRAP(-) inflammatory macrophages, were present within the bone injury site and persisted throughout the healing time course. In vivo depletion of osteomacs/macrophages (either using the Mafia transgenic mouse model or clodronate liposome delivery) or osteoclasts (recombinant osteoprotegerin treatment) established that osteomacs were required for deposition of collagen type 1(+) matrix and bone mineralization in the tibial injury model, as assessed by quantitative immunohistology and micro-computed tomography. Conversely, administration of the macrophage growth factor, colony stimulating factor (CSF)-1, significantly increased the number of osteomacs/macrophages at the injury site with a concurrent increase in new CT1(+) matrix deposition and enhanced mineralization. This study establishes osteomacs as participants in intramembranous bone healing, and as targets for primary anabolic bone therapies. (c) 2011 American Society for Bone and Mineral Research.
Original languageUndefined/Unknown
Pages (from-to)1517-1532
Number of pages16
JournalJournal of Bone and Mineral Research
Issue number7
Publication statusPublished - 2011

Cite this