Abstract / Description of output
Original language | English |
---|---|
Article number | 207 |
Pages (from-to) | 1-62 |
Number of pages | 62 |
Journal | Astronomical Journal |
Volume | 164 |
Issue number | 5 |
DOIs | |
Publication status | Published - 20 Oct 2022 |
Keywords / Materials (for Non-textual outputs)
- astro-ph.IM
- astro-ph.CO
Access to Document
Fingerprint
Dive into the research topics of 'Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Astronomical Journal, Vol. 164, No. 5, 207, 20.10.2022, p. 1-62.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument
AU - DESI Collaboration
AU - Abareshi, B.
AU - Aguilar, J.
AU - Ahlen, S.
AU - Alam, Shadab
AU - Alexander, David M.
AU - Alfarsy, R.
AU - Allen, L.
AU - Prieto, C. Allende
AU - Alves, O.
AU - Ameel, J.
AU - Armengaud, E.
AU - Asorey, J.
AU - Aviles, Alejandro
AU - Bailey, S.
AU - Balaguera-Antolínez, A.
AU - Ballester, O.
AU - Baltay, C.
AU - Bault, A.
AU - Beltran, S. F.
AU - Benavides, B.
AU - BenZvi, S.
AU - Berti, A.
AU - Besuner, R.
AU - Beutler, Florian
AU - Bianchi, D.
AU - Blake, C.
AU - Blanc, P.
AU - Blum, R.
AU - Bolton, A.
AU - Bose, S.
AU - Bramall, D.
AU - Brieden, S.
AU - Brodzeller, A.
AU - Brooks, D.
AU - Brownewell, C.
AU - Buckley-Geer, E.
AU - Cahn, R. N.
AU - Cai, Z.
AU - Canning, R.
AU - Rosell, A. Carnero
AU - Carton, P.
AU - Casas, R.
AU - Castander, F. J.
AU - Cervantes-Cota, J. L.
AU - Chabanier, S.
AU - Chaussidon, E.
AU - Chuang, C.
AU - Circosta, C.
AU - Cole, S.
AU - Cooper, A. P.
AU - Costa, L. da
AU - Cousinou, M. -C.
AU - Cuceu, A.
AU - Davis, T. M.
AU - Dawson, K.
AU - Cruz-Noriega, R. de la
AU - Macorra, A. de la
AU - Mattia, A. de
AU - Costa, J. Della
AU - Demmer, P.
AU - Derwent, M.
AU - Dey, A.
AU - Dey, B.
AU - Dhungana, G.
AU - Ding, Z.
AU - Dobson, C.
AU - Doel, P.
AU - Donald-McCann, J.
AU - Donaldson, J.
AU - Douglass, K.
AU - Duan, Y.
AU - Dunlop, P.
AU - Edelstein, J.
AU - Eftekharzadeh, S.
AU - Eisenstein, D. J.
AU - Enriquez-Vargas, M.
AU - Escoffier, S.
AU - Evatt, M.
AU - Fagrelius, P.
AU - Fan, X.
AU - Fanning, K.
AU - Fawcett, V. A.
AU - Ferraro, S.
AU - Ereza, J.
AU - Flaugher, B.
AU - Font-Ribera, A.
AU - Forero-Romero, J. E.
AU - Frenk, C. S.
AU - Fromenteau, S.
AU - Gänsicke, B. T.
AU - Garcia-Quintero, C.
AU - Garrison, L.
AU - Gaztañaga, E.
AU - Gerardi, F.
AU - Gil-Marín, H.
AU - Gontcho, S. Gontcho A
AU - Gonzalez-Morales, Alma X.
AU - Gonzalez-de-Rivera, G.
AU - Gonzalez-Perez, V.
AU - Gordon, C.
AU - Graur, O.
AU - Green, D.
AU - Grove, C.
AU - Gruen, D.
AU - Gutierrez, G.
AU - Guy, J.
AU - Hahn, C.
AU - Harris, S.
AU - Herrera, D.
AU - Herrera-Alcantar, Hiram K.
AU - Honscheid, K.
AU - Howlett, C.
AU - Huterer, D.
AU - Iršič, V.
AU - Ishak, M.
AU - Jelinsky, P.
AU - Jiang, L.
AU - Jimenez, J.
AU - Jing, Y. P.
AU - Joyce, R.
AU - Jullo, E.
AU - Juneau, S.
AU - Karaçaylı, N. G.
AU - Karamanis, M.
AU - Karcher, A.
AU - Karim, T.
AU - Kehoe, R.
AU - Kent, S.
AU - Kirkby, D.
AU - Kisner, T.
AU - Kitaura, F.
AU - Koposov, S. E.
AU - Kovács, A.
AU - Kremin, A.
AU - Krolewski, Alex
AU - L'Huillier, B.
AU - Lahav, O.
AU - Lambert, A.
AU - Lamman, C.
AU - Lan, Ting-Wen
AU - Landriau, M.
AU - Lane, S.
AU - Lang, D.
AU - Lange, J. U.
AU - Lasker, J.
AU - Guillou, L. Le
AU - Leauthaud, A.
AU - Suu, A. Le Van
AU - Levi, Michael E.
AU - Li, T. S.
AU - Magneville, C.
AU - Manera, M.
AU - Manser, Christopher J.
AU - Marshall, B.
AU - McCollam, W.
AU - McDonald, P.
AU - Meisner, Aaron M.
AU - Mezcua, J. Mena-Fernández M.
AU - Miller, T.
AU - Miquel, R.
AU - Montero-Camacho, P.
AU - Moon, J.
AU - Martini, J. Paul
AU - Meneses-Rizo, J.
AU - Moustakas, J.
AU - Mueller, E.
AU - Muñoz-Gutiérrez, Andrea
AU - Myers, Adam D.
AU - Nadathur, S.
AU - Najita, J.
AU - Napolitano, L.
AU - Neilsen, E.
AU - Newman, Jeffrey A.
AU - Nie, J. D.
AU - Ning, Y.
AU - Niz, G.
AU - Norberg, P.
AU - Noriega, Hernán E.
AU - O'Brien, T.
AU - Obuljen, A.
AU - Palanque-Delabrouille, N.
AU - Palmese, A.
AU - Zhiwei, P.
AU - Pappalardo, D.
AU - Peng, X.
AU - Percival, W. J.
AU - Perruchot, S.
AU - Pogge, R.
AU - Poppett, C.
AU - Porredon, A.
AU - Prada, F.
AU - Prochaska, J.
AU - Pucha, R.
AU - Pérez-Fernández, A.
AU - Pérez-Ráfols, I.
AU - Rabinowitz, D.
AU - Raichoor, A.
AU - Ramirez-Solano, S.
AU - Ramírez-Pérez, César
AU - Ravoux, C.
AU - Reil, K.
AU - Rezaie, M.
AU - Rocher, A.
AU - Rockosi, C.
AU - Roe, N. A.
AU - Roodman, A.
AU - Ross, A. J.
AU - Rossi, G.
AU - Ruggeri, R.
AU - Ruhlmann-Kleider, V.
AU - Sabiu, C. G.
AU - Safonova, S.
AU - Said, K.
AU - Saintonge, A.
AU - Catonga, Javier Salas
AU - Samushia, L.
AU - Sanchez, E.
AU - Saulder, C.
AU - Schaan, E.
AU - Schlafly, E.
AU - Schlegel, D.
AU - Schmoll, J.
AU - Scholte, D.
AU - Schubnell, M.
AU - Secroun, A.
AU - Seo, H.
AU - Serrano, S.
AU - Sharples, Ray M.
AU - Sholl, Michael J.
AU - Silber, Joseph Harry
AU - Silva, D. R.
AU - Sirk, M.
AU - Siudek, M.
AU - Smith, A.
AU - Sprayberry, D.
AU - Staten, R.
AU - Stupak, B.
AU - Tan, T.
AU - Tarlé, Gregory
AU - Tie, Suk Sien
AU - Tojeiro, R.
AU - Ureña-López, L. A.
AU - Valdes, F.
AU - Valenzuela, O.
AU - Valluri, M.
AU - Vargas-Magaña, M.
AU - Verde, L.
AU - Walther, M.
AU - Wang, B.
AU - Wang, M. S.
AU - Weaver, B. A.
AU - Weaverdyck, C.
AU - Wechsler, R.
AU - Wilson, Michael J.
AU - Yang, J.
AU - Yu, Y.
AU - Yuan, S.
AU - Yèche, Christophe
AU - Zhang, H.
AU - Zhang, K.
AU - Zhao, Cheng
AU - Zhou, Rongpu
AU - Zhou, Zhimin
AU - Zou, J.
AU - Zou, J.
AU - Zou, S.
AU - Zu, Y.
N1 - 78 pages, 32 figures, submitted to AJ Funding Information: The formal start of the project that became DESI occurred with DOE approval of Critical Decision Zero (CD-0) or Mission Need on 2012 September 18. DOE subsequently selected Lawrence Berkeley National Laboratory (LBNL) as the lead laboratory for DESI and appointed the LBNL Project Director. Extensive design studies began at this time and showed that the instrument would need an FOV of 2°–3° diameter, many thousands of fiber positioners, high throughput, and excellent PSF stability for sky subtraction. This period also coincided with significant research and development (R&D) and systems engineering activity. The R&D included the development of fiber positioners, study of alternative positioner technologies, work on spectrograph PSF stability that would be critical for sky subtraction, and further development of low-noise amplifiers for the CCDs. During this time period, we had many conversations with vendors about the corrector lenses, spectrograph optics, and VPH gratings. We also received generous support from the Gordon and Betty Moore Foundation and the Heising–Simons Foundation. This early financial support enabled us to begin procurements of critical, long-lead components, namely the glass for the corrector and the first spectrograph. Funding Information: This research is supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under contract No. DE-AC02-05CH11231, and by the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility under the same contract. Additional support for DESI is provided by the U.S. National Science Foundation, Division of Astronomical Sciences under contract No. AST-0950945 to the NSF's National Optical-Infrared Astronomy Research Laboratory; the Science and Technologies Facilities Council of the United Kingdom; the Gordon and Betty Moore Foundation; the Heising–Simons Foundation; the French Alternative Energies and Atomic Energy Commission (CEA); the National Council of Science and Technology of Mexico (CONACYT); the Ministry of Science and Innovation of Spain, and by the DESI Member Institutions: Aix-Marseille University; Argonne National Laboratory; Barcelona-Madrid Regional Participation Group; Brookhaven National Laboratory; Boston University; Brazil Regional Participation Group; Carnegie Mellon University; CEA-IRFU, Saclay; China Participation Group; Cornell University; Durham University; École Polytechnique Fédérale de Lausanne; Eidgenössische Technische Hochschule, Zürich; Fermi National Accelerator Laboratory; Granada-Madrid-Tenerife Regional Participation Group; Harvard University; Kansas State University; Korea Astronomy and Space Science Institute; Korea Institute for Advanced Study; Lawrence Berkeley National Laboratory; Laboratoire de Physique Nucléaire et de Hautes Energies; Ludwig Maximilians University; Max Planck Institute; Mexico Regional Participation Group; New York University; NSF's National Optical-Infrared Astronomy Research Laboratory; Ohio University; Perimeter Institute; Shanghai Jiao Tong University; Siena College; SLAC National Accelerator Laboratory; Southern Methodist University; Swinburne University; The Ohio State University; Universidad de los Andes; University of Arizona; University of Barcelona; University of California, Berkeley; University of California, Irvine; University of California, Santa Cruz; University College London; University of Florida; University of Michigan at Ann Arbor; University of Pennsylvania; University of Pittsburgh; University of Portsmouth; University of Queensland; University of Rochester; University of Toronto; University of Utah; University of Waterloo; University of Wyoming; University of Zurich; UK Regional Participation Group; and Yale University. Publisher Copyright: © 2022. The Author(s). Published by the American Astronomical Society.
PY - 2022/10/20
Y1 - 2022/10/20
N2 - The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 32 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360–980 nm with a spectral resolution that ranges from 2000–5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 01 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 × 10−17 erg s−1 cm−2 in 1000 s for galaxies at z = 1.4–1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned.
AB - The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 32 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360–980 nm with a spectral resolution that ranges from 2000–5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 01 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 × 10−17 erg s−1 cm−2 in 1000 s for galaxies at z = 1.4–1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned.
KW - astro-ph.IM
KW - astro-ph.CO
U2 - 10.3847/1538-3881/ac882b
DO - 10.3847/1538-3881/ac882b
M3 - Article
SN - 0004-6256
VL - 164
SP - 1
EP - 62
JO - Astronomical Journal
JF - Astronomical Journal
IS - 5
M1 - 207
ER -