Abstract / Description of output
Monte Carlo (MC) algorithms are widely used for Bayesian inference in statistics, signal processing, and machine learning. In this work, we introduce an Markov Chain Monte Carlo (MCMC) technique driven by a particle filter. The resulting scheme is a generalization of the so-called Particle Metropolis-Hastings (PMH) method, where a suitable Markov chain of sets of weighted samples is generated. We also introduce a marginal version for the goal of jointly inferring dynamic and static variables. The proposed algorithms outperform the corresponding standard PMH schemes, as shown by numerical experiments.
Original language | English |
---|---|
Number of pages | 5 |
DOIs | |
Publication status | Published - 9 Apr 2020 |
Event | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain Duration: 4 May 2020 → 8 May 2020 |
Conference
Conference | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 4/05/20 → 8/05/20 |