Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia

Periklis Makrythanasis, Mitsuhiro Kato, Maha S. Zaki, Hirotomo Saitsu, Kazuyuki Nakamura, Federico A. Santoni, Satoko Miyatake, Mitsuko Nakashima, Mahmoud Y. Issa, Michel Guipponi, Audrey Letourneau, Clare V. Logan, Nicola Roberts, David A. Parry, Colin A. Johnson, Naomichi Matsumoto, Hanan Hamamy, Eamonn Sheridan, Taroh Kinoshita, Stylianos E. Antonarakis*Yoshiko Murakami

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 various proteins to the cell surface. At least 27 genes are involved in biosynthesis and transport of GPI-anchored proteins (GPI-APs). To date, mutations in 13 of these genes are known to cause inherited GPI deficiencies (IGDs), and all are inherited as recessive traits. IGDs mainly manifest as intellectual disability, epilepsy, coarse facial features, and multiple organ anomalies. These symptoms are caused by the decreased surface expression of GPI-APs or by structural abnormalities of GPI. Here, we present five affected individuals (from two consanguineous families from Egypt and Pakistan and one non-consanguineous family from Japan) who show intellectual disability, hypotonia, and early-onset seizures. We identified pathogenic variants in PIGG, a gene in the GPI pathway. In the consanguineous families, homozygous variants c.928C>T (p.Gln310*) and c.2261+1G>C were found, whereas the Japanese individual was compound heterozygous for c.2005C>T (p.Arg669Cys) and a 2.4 Mb deletion involving PIGG. PIGG is the enzyme that modifies the second mannose with ethanolamine phosphate, which is removed soon after GPI is attached to the protein. Physiological significance of this transient modification has been unclear. Using B lymphoblasts from affected individuals of the Egyptian and Japanese families, we revealed that PIGG activity was almost completely abolished; however, the GPI-APs had normal surface levels and normal structure, indicating that the pathogenesis of PIGG deficiency is not yet fully understood. The discovery of pathogenic variants in PIGG expands the spectrum of IGDs and further enhances our understanding of this etiopathogenic class of intellectual disability.

Original languageEnglish
JournalAmerican Journal of Human Genetics
Early online date17 Mar 2016
DOIs
Publication statusPublished - 7 Apr 2016

Fingerprint

Dive into the research topics of 'Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia'. Together they form a unique fingerprint.

Cite this