Peptide assembly directed and quantified using megadalton DNA nanostructures

Juan Jin, Emily G. Baker, Christopher W. Wood, Jonathan Bath, Derek N. Woolfson, Andrew J. Turberfield*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In nature, co-assembly of polypeptides, nucleic acids, and polysaccharides is used to create functional supramolecular structures. Here, we show that DNA nanostructures can be used to template interactions between peptides and to enable the quantification of multivalent interactions that would otherwise not be observable. Our functional building blocks are peptide-oligonucleotide conjugates comprising de novo designed dimeric coiled-coil peptides covalently linked to oligonucleotide tags. These conjugates are incorporated in megadalton DNA origami nanostructures and direct nanostructure association through peptide-peptide interactions. Free and bound nanostructures can be counted directly from electron micrographs, allowing estimation of the dissociation constants of the peptides linking them. Results for a single peptide-peptide interaction are consistent with the measured solution-phase free energy; DNA nanostructures displaying multiple peptides allow the effects of polyvalency to be probed. This use of DNA nanostructures as identifiers allows the binding strengths of homo- and heterodimeric peptide combinations to be measured in a single experiment and gives access to dissociation constants that are too low to be quantified by conventional techniques. The work also demonstrates that hybrid biomolecules can be programmed to achieve spatial organization of complex synthetic biomolecular assemblies.

Original languageEnglish
Pages (from-to)9927-9935
Number of pages9
JournalACS Nano
Volume13
Issue number9
DOIs
Publication statusPublished - 24 Sep 2019

Keywords

  • DNA nanostructure
  • heterodimeric coiled coil
  • peptide
  • peptide-oligonucleotide conjugate
  • polyvalent binding
  • self-assembly

Fingerprint

Dive into the research topics of 'Peptide assembly directed and quantified using megadalton DNA nanostructures'. Together they form a unique fingerprint.

Cite this