Percussion synthesis based on models of nonlinear shell vibration

Research output: Contribution to journalArticlepeer-review


The synthesis of sound based on physical models of 2-D percussion instruments is problematic and has been approached only infrequently in the literature. Beyond the computational expense inherent to the simulation of 2-D systems, a deeper difficulty is in dealing with the strong nonlinearity exhibited by thin structures when struck--this nonlinearity leads to phenomena which are not captured, even approximately, by a linear model, and nearly all synthesis work is based on the assumption that the distributed resonating component of a musical instrument is linear. Perceptually, the effects of the vibration of a thin structure at high amplitudes can be heard as crashes, pitch glides, and the slow buildup of high-frequency energy characteristic of gongs. A large family of instruments may be described, approximately, as circular thin shells, of approximately spherical geometry, in which case a tractable PDE description, described here, is available. Time-domain finite-difference schemes, in radial coordinates, are a suitable method for synthesis. Stability conditions, numerical boundary conditions both at the edge and center, and implementation details are discussed, and simulation results are presented, highlighting the various perceptual effects mentioned above.
Original languageEnglish
Pages (from-to)872-880
Number of pages9
JournalIEEE Transactions on Audio, Speech and Language Processing
Issue number4
Publication statusPublished - May 2010


  • sound synthesis
  • physical modeling
  • percussion
  • nonlinear distributed systems
  • musical acoustics
  • gongs
  • finite-difference schemes
  • cymbals

Fingerprint Dive into the research topics of 'Percussion synthesis based on models of nonlinear shell vibration'. Together they form a unique fingerprint.

Cite this