Performance of the reconstruction of large impact parameter tracks in the inner detector of ATLAS

ATLAS Publications, J.F. Allen, T.M. Carter, D. Duda, J.M. Gargan, R.Y. Gonzalez Andana, A. Hasib, V.A. Parrish, E.A. Pender, T. Qiu, E.P. Takeva, N. Themistokleous, E.M. Villhauer, Z. Xu, E. Zaid

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Searches for long-lived particles (LLPs) are among the most promising avenues for discovering physics beyond the Standard Model at the Large Hadron Collider
(LHC). However, displaced signatures are notoriously difficult to identify due to their ability to evade standard object reconstruction strategies. In particular, the ATLAS track reconstruction applies strict pointing requirements which limit sensitivity to charged particles originating far from the primary interaction point. To recover efficiency for LLPs decaying within the tracking detector volume, the ATLAS Collaboration employs a dedicated large-radius tracking (LRT) pass with loosened pointing requirements. During Run 2 of the LHC, the LRT implementation produced many incorrectly reconstructed tracks and was therefore only deployed in small subsets of events. In preparation for LHC Run 3,
ATLAS has significantly improved both standard and large-radius track reconstruction performance, allowing for LRT to run in all events. This development greatly expands the potential phase-space of LLP searches and streamlines LLP analysis workflows. This paper will highlight the above achieve-
ment and report on the readiness of the ATLAS detector for track-based LLP searches in Run 3.
Original languageEnglish
Article number1081
Pages (from-to)1-32
Number of pages32
JournalThe European Physical Journal C
Volume83
Issue number11
DOIs
Publication statusPublished - 27 Nov 2023

Fingerprint

Dive into the research topics of 'Performance of the reconstruction of large impact parameter tracks in the inner detector of ATLAS'. Together they form a unique fingerprint.

Cite this