Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling

Jie Shen, Jing Zhang, Mingjian Zhou, Heng Zhou, Beimi Cui, Cecilia Gotor, Luis C. Romero, Ling Fu, Jing Yang, Christine Helen Foyer, Qiaona Pan, Wenbiao Shen, Yanjie Xie*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Hydrogen sulfide (H2S) is a gaseous signaling molecule that regulates diverse cellular signaling pathways through persulfidation, which involves the post-translational modification of specific Cys residues to form persulfides. However, the mechanisms that underlie this important redox-based modification remain poorly understood in higher plants. We have, therefore, analyzed how protein persulfidation acts as a specific and reversible signaling mechanism during the abscisic acid (ABA) response in Arabidopsis (Arabidopsis thaliana). Here we show that ABA stimulates the persulfidation of L-CYSTEINE DESULFHYDRASE1, an important endogenous H2S enzyme, at Cys44 and Cys205 in a redox-dependent manner. Moreover, sustainable H2S accumulation drives persulfidation of the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG PROTEIN D (RBOHD) at Cys825 and Cys890, enhancing its ability to produce reactive oxygen species. Physiologically, S-persulfidation-induced RBOHD activity is relevant to ABA-induced stomatal closure. Together, these processes form a negative feedback loop that fine-tunes guard cell redox homeostasis and ABA signaling. These findings not only expand our current knowledge of H2S function in the context of guard cell ABA signaling, but also demonstrate the presence of a rapid signal integration mechanism involving specific and reversible redox-based post-translational modifications that occur in response to changing environmental conditions.

Original languageEnglish
Pages (from-to)1000-1017
Number of pages18
JournalPlant Cell
Issue number4
Publication statusPublished - 5 Feb 2020


Dive into the research topics of 'Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling'. Together they form a unique fingerprint.

Cite this