Phylogenetic Tools for Generalized HIV-1 Epidemics: Findings from the PANGEA-HIV Methods Comparison

Oliver Ratmann, Emma Hodcroft, Michael Pickles, Anne Cori, Matthew Hall, Samantha Lycett, Caroline Colijn, Andrew Leigh Brown, Christophe Fraser

Research output: Contribution to journalArticlepeer-review

Abstract

Viral phylogenetic methods contribute to understanding how HIV spreads in populations, and thereby help guide the design of prevention interventions. So far, most analyses have been applied to well-sampled concentrated HIV-1 epidemics in wealthy countries. To direct the use of phylogenetic tools to where the impact of HIV-1 is greatest, the Phylogenetics And Networks for Generalized HIV Epidemics in Africa (PANGEA-HIV) consortium generates full-genome viral sequences from across sub-Saharan Africa. Analyzing these data presents new challenges, since epidemics are principally driven by heterosexual transmission and a smaller fraction of cases is sampled. Here, we show that viral phylogenetic tools can be adapted and used to estimate epidemiological quantities of central importance to HIV-1 prevention in sub-Saharan Africa. We used a community-wide methods comparison exercise on simulated data, where participants were blinded to the true dynamics they were inferring. Two distinct simulations captured generalized HIV-1 epidemics, before and after a large community-level intervention that reduced infection levels. Five research groups participated. Structured coalescent modelling approaches were most successful: phylogenetic estimates of HIV-1 incidence, incidence reductions, and the proportion of transmissions from individuals in their first three months of infection correlated with the true values (Pearson correlation > 90%), with small bias. However, on some simulations, true values were markedly outside reported confidence or credibility intervals. The blinded comparison revealed current limits and strengths in using HIV phylogenetics in challenging settings, provided benchmarks for future methods’ development, and supports using the latest generation of phylogenetic tools to advance HIV surveillance and prevention.
Original languageEnglish
Pages (from-to)185-203
Number of pages31
JournalMolecular Biology and Evolution
Volume34
Issue number10
Early online date7 Oct 2016
DOIs
Publication statusPublished - Jan 2017

Fingerprint Dive into the research topics of 'Phylogenetic Tools for Generalized HIV-1 Epidemics: Findings from the PANGEA-HIV Methods Comparison'. Together they form a unique fingerprint.

Cite this