Abstract
We propose a model that is able to perform unsupervised physical parameter estimation of systems from video, where the differential equations governing the scene dynamics are known, but labeled states or objects are not available. Existing physical scene understanding methods require either object state supervision, or do not integrate with differentiable physics to learn interpretable system parameters and states. We address this problem through a physics-as-inverse-graphics approach that brings together vision-as-inverse-graphics and differentiable physics engines, enabling objects and explicit state and velocity representations to be discovered. This framework allows us to perform long term extrapolative video prediction, as well as vision-based model-predictive control. Our approach significantly out-performs related unsupervised methods in long-term future frame prediction of systems with interacting objects (such as ball-spring or 3-body gravitational systems), due to its ability to build dynamics into the model as an inductive bias. We further show the value of this tight vision-physics integration by demonstrating data-efficient learning of vision-actuated model-based control for a pendulum system. We also show that the controller’s interpretability provides unique capabilities in goal-driven control and physical reasoning for zero-data adaptation.
Original language | English |
---|---|
Title of host publication | Proceedings of the International Conference on Learning Representations (ICLR 2020) |
Pages | 1-16 |
Number of pages | 16 |
Publication status | Published - 30 Apr 2020 |
Event | Eighth International Conference on Learning Representations - Millennium Hall, Virtual conference formerly Addis Ababa, Ethiopia Duration: 26 Apr 2020 → 30 Apr 2020 https://iclr.cc/Conferences/2020 |
Conference
Conference | Eighth International Conference on Learning Representations |
---|---|
Abbreviated title | ICLR 2020 |
Country/Territory | Ethiopia |
City | Virtual conference formerly Addis Ababa |
Period | 26/04/20 → 30/04/20 |
Internet address |