Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande

Hyper-Kamiokande Proto-Collaborati, K. Abe*, H. Aihara, C. Andreopoulos, I. Anghel, A. Ariga, T. Ariga, R. Asfandiyarov, M. Askins, J. J. Back, P. Ballett, M. Barbi, G. J. Barker, G. Barr, F. Bay, P. Beltrame, V. Berardi, M. Bergevin, S. Berkman, T. BerryS. Bhadra, F. D. M. Blaszczyk, A. Blondel, S. Bolognesi, S. B. Boyd, A. Bravar, C. Bronner, F. S. Cafagna, G. Carminati, S. L. Cartwright, M. G. Catanesi, K. Choi, J. H. Choi, G. Collazuol, G. Cowan, L. Cremonesi, G. Davies, G. De Rosa, C. Densham, J. Detwiler, D. Dewhurst, F. Di Lodovico, S. Di Luise, O. Drapier, S. Emery, A. Ereditato, P. Fernandez, T. Feusels, F. Muheim, M. Needham, S. Playfer

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Hyper-Kamiokande will be a next-generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of CP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long-baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW x 10(7) s integrated proton beam power (corresponding to 1.56 x 10(22) protons on target with a 30 GeV proton beam) to a 2.5 degrees off-axis neutrino beam, it is expected that the leptonic CP phase delta(CP) can be determined to better than 19 degrees for all possible values of delta(CP), and CP violation can be established with a statistical significance of more than 3 sigma (5 sigma) for 76% (58%) of the delta(CP) parameter space. Using both nu(e) appearance and nu(mu) disappearance data, the expected 1 sigma uncertainty of sin(2) theta(23) is 0.015(0.006) for sin(2) theta(23) = 0.5(0.45).

Original languageEnglish
Article numberARTN 053C02
Number of pages35
JournalProgress of theoretical and experimental physics
Issue number5
Publication statusPublished - May 2015


  • MASS


Dive into the research topics of 'Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande'. Together they form a unique fingerprint.

Cite this