Projects per year
Abstract
In this paper, we develop a unified mixed integer linear modeling approach to compute near-optimal policy parameters for the non-stationary stochastic lot sizing problem under static-dynamic uncertainty strategy. The proposed approach applies to settings in which unmet demand is backordered or lost; and it can accommodate variants of the problem for which the quality of service is captured by means of backorder penalty costs, non-stockout probabilities, or fill rate constraints. This approach has a number of advantages with respect to existing methods in the literature: it enables seamless modeling of different variants of the stochastic lot sizing problem, some of which have been previously tackled via ad-hoc solution methods and some others that has not yet been addressed in the literature; and it produces an accurate estimation of the expected total cost, expressed in terms of upper and lower bounds based on piecewise linearisation of the first order loss function. We illustrate the effectiveness and flexibility of the proposed approach by means of a computational study.
Original language | English |
---|---|
Pages (from-to) | 126-140 |
Journal | Omega |
Volume | 50 |
Issue number | 1 |
Early online date | 20 Aug 2014 |
DOIs | |
Publication status | Published - Jan 2015 |
Fingerprint
Dive into the research topics of 'Piecewise linear approximations for the static-dynamic uncertainty strategy in stochastic lot-sizing'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Confidence-based optimization for inventory management at a local grocery store
Rossi, R. (Principal Investigator) & Yao, X. (Researcher)
1/09/13 → 31/08/14
Project: University Awarded Project Funding
Activities
- 1 Participation in conference
-
20th Conference of the International Federation of Operational Research Societies
Rossi, R. (Speaker)
2014Activity: Participating in or organising an event types › Participation in conference
Profiles
-
Roberto Rossi
- Business School - Personal Chair of Uncertainty Modeling
- Management Science and Business Economics
- Edinburgh Strategic Resilience Initiative
- Culture, Accounting & Society Research Network
- Management Science
Person: Academic: Research Active