TY - JOUR
T1 - Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development
AU - Gorgoni, Barbara
AU - Richardson, William A.
AU - Burgess, Hannah M.
AU - Anderson, Ross C.
AU - Wilkie, Gavin S.
AU - Gautier, Philippe
AU - Martins, Joao P. Sousa
AU - Brook, Matthew
AU - Sheets, Michael D.
AU - Gray, Nicola K.
PY - 2011/5/10
Y1 - 2011/5/10
N2 - Translational control of many mRNAs in developing metazoan embryos is achieved by alterations in their poly(A) tail length. A family of cytoplasmic poly(A)-binding proteins (PABPs) bind the poly(A) tail and can regulate mRNA translation and stability. However, despite the extensive biochemical characterization of one family member (PABP1), surprisingly little is known about their in vivo roles or functional relatedness. Because no information is available in vertebrates, we address their biological roles, establishing that each of the cytoplasmic PABPs conserved in Xenopus laevis [PABP1, embryonic PABP (ePABP), and PABP4] is essential for normal development. Morpholino-mediated knockdown of PABP1 or ePABP causes both anterior and posterior phenotypes and embryonic lethality. In contrast, depletion of PABP4 results mainly in anterior defects and lethality at later stages. Unexpectedly, cross-rescue experiments reveal that neither ePABP nor PABP4 can fully rescue PABP1 depletion, establishing that PABPs have distinct functions. Comparative analysis of the uncharacterized PABP4 with PABP1 and ePABP shows that it shares a mechanistically conserved core role in promoting global translation. Consistent with this analysis, each morphant displays protein synthesis defects, suggesting that their roles in mRNA-specific translational regulation and/or mRNA decay, rather than global translation, underlie the functional differences between PABPs. Domain-swap experiments reveal that the basis of the functional specificity is complex, involving multiple domains of PABPs, and is conferred, at least in part, by protein-protein interactions.
AB - Translational control of many mRNAs in developing metazoan embryos is achieved by alterations in their poly(A) tail length. A family of cytoplasmic poly(A)-binding proteins (PABPs) bind the poly(A) tail and can regulate mRNA translation and stability. However, despite the extensive biochemical characterization of one family member (PABP1), surprisingly little is known about their in vivo roles or functional relatedness. Because no information is available in vertebrates, we address their biological roles, establishing that each of the cytoplasmic PABPs conserved in Xenopus laevis [PABP1, embryonic PABP (ePABP), and PABP4] is essential for normal development. Morpholino-mediated knockdown of PABP1 or ePABP causes both anterior and posterior phenotypes and embryonic lethality. In contrast, depletion of PABP4 results mainly in anterior defects and lethality at later stages. Unexpectedly, cross-rescue experiments reveal that neither ePABP nor PABP4 can fully rescue PABP1 depletion, establishing that PABPs have distinct functions. Comparative analysis of the uncharacterized PABP4 with PABP1 and ePABP shows that it shares a mechanistically conserved core role in promoting global translation. Consistent with this analysis, each morphant displays protein synthesis defects, suggesting that their roles in mRNA-specific translational regulation and/or mRNA decay, rather than global translation, underlie the functional differences between PABPs. Domain-swap experiments reveal that the basis of the functional specificity is complex, involving multiple domains of PABPs, and is conferred, at least in part, by protein-protein interactions.
UR - http://www.scopus.com/inward/record.url?scp=79956368433&partnerID=8YFLogxK
U2 - 10.1073/pnas.1017664108
DO - 10.1073/pnas.1017664108
M3 - Article
C2 - 21518916
VL - 108
SP - 7844
EP - 7849
JO - Proceedings of the National Academy of Sciences (PNAS)
JF - Proceedings of the National Academy of Sciences (PNAS)
SN - 0027-8424
IS - 19
ER -