Abstract / Description of output
Background: Preterm birth (PTB) represents the leading cause of neonatal death. Large-scale genetic studies are necessary to determine genetic influences on PTB risk, but prospective cohort studies are expensive and time-consuming. We investigated the feasibility of retrospective recruitment of post-partum women for efficient collection of genetic samples, with self-collected saliva for DNA extraction from themselves and their babies, alongside self-recollection of pregnancy and birth details to phenotype PTB.
Methods: 708 women who had participated in the OPPTIMUM trial (a randomised trial of progesterone pessaries to prevent PTB [ISRCTN14568373]) and consented to further contact were invited to provide self-collected saliva from themselves and their babies. DNA was extracted from Oragene OG-500 (adults) and OG-575 (babies) saliva kits and the yield measured by Qubit. Samples were analysed using a panel of Taqman single nucleotide polymorphism (SNP) assays. A questionnaire designed to meet the minimum data set required for phenotyping PTB was included. Questionnaire responses were transcribed and analysed for concordance with prospective trial data.
Results: Recruitment rate was 162/708 (23%) for self-collected saliva samples and 157/708 (22%) for questionnaire responses. 161 samples from the mother provided DNA with median yield 59.0µg (0.4-148.9µg). 156 samples were successfully genotyped (96.9%). 136 baby samples had a median yield 11.5µg (0.1-102.7µg); two samples failed DNA extraction. 131 baby samples (96.3%) were successfully genotyped. Concordance between self-recalled birth details and prospective birth details ranged from 55 – 99%, median 86%. The highest rates of concordance were found for mode of birth (154/156 [99%]), smoking status (151/157 [96%]) and ethnicity (149/156 [96%]).
Conclusion: This feasibility study demonstrates that self-collected DNA samples from mothers and babies were sufficient for genetic analysis but yields were variable. Self-recollection of pregnancy and birth details was inadequate for accurately phenotyping PTB, highlighting the need for alternative strategies for investigating genetic links with PTB.
Methods: 708 women who had participated in the OPPTIMUM trial (a randomised trial of progesterone pessaries to prevent PTB [ISRCTN14568373]) and consented to further contact were invited to provide self-collected saliva from themselves and their babies. DNA was extracted from Oragene OG-500 (adults) and OG-575 (babies) saliva kits and the yield measured by Qubit. Samples were analysed using a panel of Taqman single nucleotide polymorphism (SNP) assays. A questionnaire designed to meet the minimum data set required for phenotyping PTB was included. Questionnaire responses were transcribed and analysed for concordance with prospective trial data.
Results: Recruitment rate was 162/708 (23%) for self-collected saliva samples and 157/708 (22%) for questionnaire responses. 161 samples from the mother provided DNA with median yield 59.0µg (0.4-148.9µg). 156 samples were successfully genotyped (96.9%). 136 baby samples had a median yield 11.5µg (0.1-102.7µg); two samples failed DNA extraction. 131 baby samples (96.3%) were successfully genotyped. Concordance between self-recalled birth details and prospective birth details ranged from 55 – 99%, median 86%. The highest rates of concordance were found for mode of birth (154/156 [99%]), smoking status (151/157 [96%]) and ethnicity (149/156 [96%]).
Conclusion: This feasibility study demonstrates that self-collected DNA samples from mothers and babies were sufficient for genetic analysis but yields were variable. Self-recollection of pregnancy and birth details was inadequate for accurately phenotyping PTB, highlighting the need for alternative strategies for investigating genetic links with PTB.
Original language | English |
---|---|
Journal | Wellcome Open Research |
DOIs | |
Publication status | Published - 12 Feb 2020 |
Fingerprint
Dive into the research topics of 'Postal recruitment for genetic studies of preterm birth: A feasibility study'. Together they form a unique fingerprint.Equipment
-
Genetics Core, Edinburgh Clinical Research Facility
Lee Murphy (Manager), Angie Fawkes (Other), Katarzyna Hafezi (Other), Richard Clark (Other), Amanda MacCallum (Other), Emma Aitken (Other) & Louise Macgillivray (Other)
Deanery of Clinical SciencesFacility/equipment: Facility