Abstract
Coarse-grain models are becoming an increasingly important tool in computer simulations. of a wide variety of molecular processes. In many instances it is, however, desirable to describe key portions of a molecular system at the atomic level. There is therefore a strong interest in the development of simulation methodologies that allow representations of matter with mixed granularities in a multiscale fashion. We report here a strategy to conduct mixed atomic-level and coarse-grain simulations of molecular systems with a recently developed coarse-grain model. The methodology is validated by computing partition coefficients of small molecules described in atomic detail and solvated by water or octane, both of which are represented by coarse-grain models. Because the present coarse-grain force field retains electrostatic interactions, the simplified solvent particles can interact realistically with the all-atom solutes. The partition coefficients computed by this approach rival the accuracy of fully atomistic simulations and are obtained at a fraction of their computational cost. The present methodology is simple, robust and applicable to a wide variety of molecular systems.
Original language | English |
---|---|
Pages (from-to) | 657-660 |
Number of pages | 4 |
Journal | Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry) |
Volume | 112 |
Issue number | 3 |
DOIs | |
Publication status | Published - 24 Jan 2008 |