TY - JOUR
T1 - Presynaptic NMDA receptors
T2 - Are they dendritic receptors in disguise?
AU - Duguid, Ian C
PY - 2013/4
Y1 - 2013/4
N2 - The N-methyl-d-aspartate (NMDA) receptor plays an essential role in excitatory transmission, synaptic integration, and learning and memory. In the classical view, postsynaptic NMDA receptors act as canonical coincidence detectors providing a 'molecular switch' for the induction of various forms of short- and long-term synaptic plasticity. Over the past twenty years there has been accumulating evidence to suggest that NMDA receptors are also expressed presynaptically and are involved in the regulation of synaptic transmission and specific forms of activity-dependent plasticity in developing neural circuits. However, the existence of presynaptic NMDA receptors remains a contentious issue. In this review, I will discuss the criteria required for identifying functional presynaptic receptors, novel methods for probing NMDA receptor function, and recent evidence to suggest that NMDA receptors are expressed at presynaptic sites in a target-specific manner.
AB - The N-methyl-d-aspartate (NMDA) receptor plays an essential role in excitatory transmission, synaptic integration, and learning and memory. In the classical view, postsynaptic NMDA receptors act as canonical coincidence detectors providing a 'molecular switch' for the induction of various forms of short- and long-term synaptic plasticity. Over the past twenty years there has been accumulating evidence to suggest that NMDA receptors are also expressed presynaptically and are involved in the regulation of synaptic transmission and specific forms of activity-dependent plasticity in developing neural circuits. However, the existence of presynaptic NMDA receptors remains a contentious issue. In this review, I will discuss the criteria required for identifying functional presynaptic receptors, novel methods for probing NMDA receptor function, and recent evidence to suggest that NMDA receptors are expressed at presynaptic sites in a target-specific manner.
U2 - 10.1016/j.brainresbull.2012.12.004
DO - 10.1016/j.brainresbull.2012.12.004
M3 - Article
C2 - 23279913
VL - 93
SP - 4
EP - 9
JO - Brain Research Bulletin
JF - Brain Research Bulletin
SN - 0361-9230
ER -