Abstract
This paper describes a Bayesian procedure for unsupervised learning of phonological rules from an unlabeled corpus of training data. Like Goldsmith's Linguistica program (Goldsmith, 2004b), whose output is taken as the starting point of this procedure, our learner returns a grammar that consists of a set of signatures, each of which consists of a set of stems and a set of suffixes. Our grammars differ from Linguistica's in that they also contain a set of phonological rules, which permit our grammars to collapse far more words into a signature than Linguistica can. Interestingly, the choice of a Bayesian prior turns out to be crucial for obtaining a learner that makes linguistically appropriate generalizations through a range of different sized training corpora.
Original language | English |
---|---|
Title of host publication | Proceedings of the Seventh Meeting of the ACL Special Interest Group in Computational Phonology |
Place of Publication | Barcelona, Spain |
Publisher | Association for Computational Linguistics |
Pages | 35-42 |
Number of pages | 8 |
Publication status | Published - 1 Jul 2004 |