Abstract / Description of output
A regularized version of the primal-dual Interior Point Method (IPM) for the solution of Semidefinite Programming Problems (SDPs) is presented in this paper. Leveraging on the proximal point method, a novel Proximal Stabilized Interior Point Method for SDP (PS-SDP-IPM) is introduced. The method is strongly supported by theoretical results concerning its convergence: the worst-case complexity result is established for the inner regularized infeasible inexact IPM solver. The new method demonstrates an increased robustness when dealing with problems characterized by ill-conditioning or linear dependence of the constraints without requiring any kind of pre-processing. Extensive numerical experience is reported to illustrate advantages of the proposed method when compared to the state-of-the-art solver.
Original language | English |
---|---|
Journal | Computational optimization and applications |
Early online date | 14 Oct 2024 |
DOIs | |
Publication status | E-pub ahead of print - 14 Oct 2024 |