Quantitative analysis of breast cancer diagnosis using a probabilistic modelling approach

Shuo Liu, Jinshu Zeng, Huizhou Gong, Hongqin Yang, Jia Zhai, Yi Cao, Junxiu Liu, Yuling Luo, Yuhua Li, Liam Maguire, Xuemei Ding

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Background
Breast cancer is the most prevalent cancer in women in most countries of the world. Many computer-aided diagnostic methods have been proposed, but there are few studies on quantitative discovery of probabilistic dependencies among breast cancer data features and identification of the contribution of each feature to breast cancer diagnosis.

Methods
This study aims to fill this void by utilizing a Bayesian network (BN) modelling approach. A K2 learning algorithm and statistical computation methods are used to construct BN structure and assess the obtained BN model. The data used in this study were collected from a clinical ultrasound dataset derived from a Chinese local hospital and a fine-needle aspiration cytology (FNAC) dataset from UCI machine learning repository.

Results
Our study suggested that, in terms of ultrasound data, cell shape is the most significant feature for breast cancer diagnosis, and the resistance index presents a strong probabilistic dependency on blood signals. With respect to FNAC data, bare nuclei are the most important discriminating feature of malignant and benign breast tumours, and uniformity of both cell size and cell shape are tightly interdependent.

Contributions
The BN modelling approach can support clinicians in making diagnostic decisions based on the significant features identified by the model, especially when some other features are missing for specific patients. The approach is also applicable to other healthcare data analytics and data modelling for disease diagnosis.
Original languageEnglish
Pages (from-to)168-175
JournalComputers in Biology and Medicine
Volume92
Early online date27 Nov 2017
DOIs
Publication statusPublished - 1 Jan 2018

Keywords / Materials (for Non-textual outputs)

  • clinical decision support
  • breast cancer diagnosis
  • data modelling
  • Bayesian network
  • quantitative analysis
  • diagnostic contribution

Fingerprint

Dive into the research topics of 'Quantitative analysis of breast cancer diagnosis using a probabilistic modelling approach'. Together they form a unique fingerprint.

Cite this