Projects per year
Abstract / Description of output
Computed tomography (CT) is the imaging modality used to calculate the deposit of dose in radiotherapy planning, where the physical interactions are modelled based upon the electron density, which can be calculated from CT images. Traditionally this is a three step process: linearising the raw x-ray measurements and correcting for beam-hardening and scatter; inverting the system with analytic or iterative reconstruction algorithms into linear attenuation coefficient; then applying a nonlinear calibration into electron density. In this work, we propose a new method for statistically inferring a quantitative image of electron density directly from the raw CT measurements, with no pre- or post-processing necessary, and able to cope with both beam-hardening from a single polyenergetic source and additive scatter. We evaluate this concept with cone-beam CT (CBCT) imaging for bladder cancer, where we demonstrate significantly higher electron density accuracy than other quantitative approaches. We also show through simulated photon and proton beam calculation, that our method may facilitate superior dose estimation, especially with regions containing bony structures.
Original language | English |
---|---|
Title of host publication | Medical Image Understanding and Analysis - 21st Annual Conference, MIUA 2017, Proceedings |
Publisher | Springer |
Pages | 297-308 |
Number of pages | 12 |
Volume | 723 |
ISBN (Print) | 9783319609638 |
DOIs | |
Publication status | Published - 2017 |
Event | 21st Annual Conference on Medical Image Understanding and Analysis, MIUA 2017 - Edinburgh, United Kingdom Duration: 11 Jul 2017 → 13 Jul 2017 |
Publication series
Name | Communications in Computer and Information Science |
---|---|
Volume | 723 |
ISSN (Print) | 18650929 |
Conference
Conference | 21st Annual Conference on Medical Image Understanding and Analysis, MIUA 2017 |
---|---|
Country/Territory | United Kingdom |
City | Edinburgh |
Period | 11/07/17 → 13/07/17 |
Keywords / Materials (for Non-textual outputs)
- Computed tomography
- Imaging
- Proton therapy
- Quantitative
- Radiotherapy
- Reconstruction
- Statistical
Fingerprint
Dive into the research topics of 'Quantitative electron density CT imaging for radiotherapy planning'. Together they form a unique fingerprint.Projects
- 1 Finished
-
C-SENSE: Exploiting low dimensional models in sensing, computation and signal processing
1/09/16 → 31/08/22
Project: Research