Projects per year
Abstract
Patterns of gene expression are primarily determined by proteins that locally enhance or repress transcription. While many transcription factors target a restricted number of genes, others appear to modulate transcription levels globally. An example is MeCP2, an abundant methylated-DNA binding protein that is mutated in the neurological disorder Rett syndrome. Despite much research, the molecular mechanism by which MeCP2 regulates gene expression is not fully resolved. Here, we integrate quantitative, multidimensional experimental analysis and mathematical modeling to indicate that MeCP2 is a global transcriptional regulator whose binding to DNA creates “slow sites” in gene bodies. We hypothesize that waves of slowed-down RNA polymerase II formed behind these sites travel backward and indirectly affect initiation, reminiscent of defect-induced shockwaves in nonequilibrium physics transport models. This mechanism differs from conventional gene-regulation mechanisms, which often involve direct modulation of transcription initiation. Our findings point to a genome-wide function of DNA methylation that may account for the reversibility of Rett syndrome in mice. Moreover, our combined theoretical and experimental approach provides a general method for understanding how global gene-expression patterns are choreographed.
Original language | English |
---|---|
Pages (from-to) | 14995-15000 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences (PNAS) |
Volume | 116 |
Issue number | 30 |
Early online date | 9 Jul 2019 |
DOIs | |
Publication status | Published - 23 Jul 2019 |
Fingerprint
Dive into the research topics of 'Quantitative modelling predicts the impact of DNA methylation on RNA polymerase II traffic'. Together they form a unique fingerprint.Projects
- 1 Finished
Datasets
-
Study of MeCP2 in LUHMES-derived neurons
Webb, S. (Creator), National Center for Biotechnology Information (Gene Expression Omnibus), 27 Jun 2019
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125660
Dataset
-
Supplementary data for the manuscript "Quantitative modelling predicts the impact of DNA methylation on RNA polymerase II traffic"
Webb, S. (Creator), Ramsahoye, B. (Creator), Pusch, O. (Creator), Yu, M. (Creator), Greulich, P. (Creator), Bird, A. (Creator), Chhatbar, K. (Creator), Waclaw, B. (Creator), Cholewa-Waclaw, J. (Creator) & Shah, R. (Creator), Edinburgh DataShare, 7 Jun 2019
DOI: 10.7488/ds/2568
Dataset