Projects per year
Abstract / Description of output
Raman spectroscopy demonstrates that the rotational spectrum of solid hydrogen, and its isotope deuterium, undergo profound transformations upon compression while still remaining in phase I. We show that these changes are associated with a loss of quantum character in the rotational modes, ie. with increasing pressure, the angular momentum J gradually ceases to be a good quantum rotational number. Through isotopic comparisons of the rotational Raman contributions, we reveal that hydrogen and deuterium evolves from a quantum rotor to a harmonic oscillator. We find that the mechanics behind this transformation can be well described by a quantum mechanical single inhibited rotor, accurately reproducing the striking spectroscopic changes observed in phase I.
Original language | English |
---|---|
Pages (from-to) | 6626-6631 |
Number of pages | 6 |
Journal | The Journal of Physical Chemistry Letters |
Volume | 11 |
Issue number | 16 |
Early online date | 16 Jul 2020 |
DOIs | |
Publication status | Published - 20 Aug 2020 |
Fingerprint
Dive into the research topics of 'Quantitative rotational to librational transition in dense H2 and D2'. Together they form a unique fingerprint.Projects
- 1 Finished