Quantum magic rectangles: Characterization and application to certified randomness expansion

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

We study a generalization of the Mermin–Peres magic square game to arbitrary rectangular dimensions. After exhibiting some general properties, these rectangular games are fully characterized in terms of their optimal win probabilities for quantum strategies. We find that for m×n rectangular games of dimensions m,n≥3, there are quantum strategies that win with certainty, while for dimensions 1×n quantum strategies do not outperform classical strategies. The final case of dimensions 2×n is richer, and we give upper and lower bounds that both outperform the classical strategies. Finally, we apply our findings to quantum certified randomness expansion to find the noise tolerance and rates for all magic rectangle games. To do this, we use our previous results to obtain the winning probability of games with a distinguished input for which the devices give a deterministic outcome and follow the analysis of C. A. Miller and Y. Shi [SIAM J. Comput. 46, 1304 (2017)].
Original languageEnglish
Article number043317
Number of pages15
JournalPhysical Review Research
Issue number4
Publication statusPublished - 4 Dec 2020


Dive into the research topics of 'Quantum magic rectangles: Characterization and application to certified randomness expansion'. Together they form a unique fingerprint.

Cite this