Projects per year
Abstract / Description of output
We present a method for calculation of Raman modes of the quantum solid phase I hydrogen and deuterium. We use the mean-field assumption that the quantized excitations are localized on one molecule. This is done by explicit solution of the time-dependent Schroedinger equation in an angle-dependent potential, and direct calculation of the polarization. We show that in the free rotor limit, the H2 and D2 frequencies differ by a factor of 2, which evolves toward √2 as the modes acquire librational character due to stronger interactions. The ratio overshoots √2 if anharmonic terms weaken the harmonic potential. We also use density functional theory and molecular dynamics to calculate the E2g optical phonon frequency and the Raman linewidths. The molecular dynamics shows that the molecules are not free rotors except at very low pressure and high temperature, and become like oscillators as phase II is approached. We fit the interaction strengths to experimental frequencies, but good agreement for intensities requires us to also include strong preferred orientation and stimulated Raman effects between S0(1) and S0(0) contributions. The experimental Raman spectrum for phase II cannot be reproduced, suggesting that the mean-field assumption is invalid in that case.
Original language | English |
---|---|
Article number | 064102 |
Journal | Physical Review B |
Volume | 102 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Aug 2020 |
Keywords / Materials (for Non-textual outputs)
- cond-mat.mtrl-sci
Fingerprint
Dive into the research topics of 'Raman signal from a hindered hydrogen rotor'. Together they form a unique fingerprint.Projects
- 1 Finished