Randomized Iterative Methods for Linear Systems

Robert Gower, Peter Richtarik

Research output: Contribution to journalArticlepeer-review


We develop a novel, fundamental and surprisingly simple randomized iterative method for solving consistent linear systems. Our method has five different but equivalent interpretations: sketch-and-project, constrain-and-approximate, random intersect, random linear solve and random fixed point. By varying its two parameters−a positive definite matrix (defining geometry), and a random matrix (sampled in an i.i.d. fashion in each iteration)−we recover a comprehensive array of well known algorithms as special cases, including the randomized Kaczmarz method, randomized Newton method, randomized coordinate descent method and random Gaussian pursuit. We naturally also obtain variants of all these methods using blocks and importance sampling. However, our method allows for a much wider selection of these two parameters, which leads to a number of new specific methods. We prove exponential convergence of the expected norm of the error in a single theorem, from which existing complexity results for known variants can be obtained. However, we also give an exact formula for the evolution of the expected iterates, which allows us to give lower bounds on the convergence rate.
Original languageEnglish
Pages (from-to)1660–1690
JournalSIAM Journal on Matrix Analysis and Applications
Issue number4
Publication statusPublished - 8 Dec 2015

Fingerprint Dive into the research topics of 'Randomized Iterative Methods for Linear Systems'. Together they form a unique fingerprint.

Cite this