Rate-based Query Optimization for Streaming Information Sources

Stratis D. Viglas, Jeffrey F. Naughton

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Relational query optimizers have traditionally relied upon table cardinalities when estimating the cost of the query plans they consider. While this approach has been and continues to be successful, the advent of the Internet and the need to execute queries over streaming sources requires a different approach, since for streaming inputs the cardinality may not be known or may not even be knowable (as is the case for an unbounded stream.) In view of this, we propose shifting from a cardinality-based approach to a rate-based approach, and give an optimization framework that aims at maximizing the output rate of query evaluation plans. This approach can be applied to cases where the cardinality-based approach cannot be used. It may also be useful for cases where cardinalities are known, because by focusing on rates we are able not only to optimize the time at which the last result tuple appears, but also to optimize for the number of answers computed at any specified time after the query evaluation commences. We present a preliminary validation of our rate-based optimization framework on a prototype XML query engine, though it is generic enough to be used in other database contexts. The results show that rate-based optimization is feasible and can indeed yield correct decisions.
Original languageEnglish
Title of host publicationSIGMOD '02 Proceedings of the 2002 ACM SIGMOD international conference on Management of data
Place of PublicationNew York, NY, USA
Number of pages12
ISBN (Print)1-58113-497-5
Publication statusPublished - 2002


Dive into the research topics of 'Rate-based Query Optimization for Streaming Information Sources'. Together they form a unique fingerprint.

Cite this