TY - UNPB
T1 - Re-using Adversarial Mask Discriminators for Test-time Training under Distribution Shifts
AU - Valvano, Gabriele
AU - Leo, Andrea
AU - Tsaftaris, Sotirios A.
N1 - This paper extends: Valvano, Leo, Tsaftaris. "Stop Throwing Away Discriminators! Re-using Adversaries for Test-Time Training." Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health. Springer, Cham, 2021. 68-78
PY - 2021
Y1 - 2021
N2 - Thanks to their ability to learn flexible data-driven losses, Generative Adversarial Networks (GANs) are an integral part of many semi- and weakly-supervised methods for medical image segmentation. GANs jointly optimise a generator and an adversarial discriminator on a set of training data. After training is complete, the discriminator is usually discarded, and only the generator is used for inference. But should we discard discriminators? In this work, we argue that training stable discriminators produces expressive loss functions that we can re-use at inference to detect and \textit{correct} segmentation mistakes. First, we identify key challenges and suggest possible solutions to make discriminators re-usable at inference. Then, we show that we can combine discriminators with image reconstruction costs (via decoders) to endow a causal perspective to test-time training and further improve the model. Our method is simple and improves the test-time performance of pre-trained GANs. Moreover, we show that it is compatible with standard post-processing techniques and it has the potential to be used for Online Continual Learning. With our work, we open new research avenues for re-using adversarial discriminators at inference. Our code is available at https://vios-s.github.io/adversarial-test-time-training.
AB - Thanks to their ability to learn flexible data-driven losses, Generative Adversarial Networks (GANs) are an integral part of many semi- and weakly-supervised methods for medical image segmentation. GANs jointly optimise a generator and an adversarial discriminator on a set of training data. After training is complete, the discriminator is usually discarded, and only the generator is used for inference. But should we discard discriminators? In this work, we argue that training stable discriminators produces expressive loss functions that we can re-use at inference to detect and \textit{correct} segmentation mistakes. First, we identify key challenges and suggest possible solutions to make discriminators re-usable at inference. Then, we show that we can combine discriminators with image reconstruction costs (via decoders) to endow a causal perspective to test-time training and further improve the model. Our method is simple and improves the test-time performance of pre-trained GANs. Moreover, we show that it is compatible with standard post-processing techniques and it has the potential to be used for Online Continual Learning. With our work, we open new research avenues for re-using adversarial discriminators at inference. Our code is available at https://vios-s.github.io/adversarial-test-time-training.
U2 - 10.48550/arXiv.2108.11926
DO - 10.48550/arXiv.2108.11926
M3 - Preprint
BT - Re-using Adversarial Mask Discriminators for Test-time Training under Distribution Shifts
PB - ArXiv
ER -