Recognition of recombinant interferon-gamma from Felidae species by anti-cat antibodies

Research output: Contribution to journalArticlepeer-review

Abstract

Mycobacterial infections cause a reasonable burden of morbidity and mortality in global feline populations, many of which are ‘Vulnerable’ or ‘Endangered’. Identifying these infections may facilitate efforts to protect these animals. An interferon-gamma (IFNγ) release assay (IGRA) to diagnose mycobacteriosis in domestic cats has been adapted for use in lions; however, the development of species-specific antibodies may be laborious. Therefore, we investigated whether anti-cat IFNγ antibodies can bind to recombinant IFNγ (rIFNγ) from other Felidae species, permitting use of the feline IGRA in a wider range of felids. Unique Felidae IFNγ protein sequences and their corresponding coding nucleotide sequence were identified from online databases; plasmids with an IFNγ-gene insert were synthesised to transform E. coli-DH5α and subsequently transfect HEK 293T cells to secrete rIFNγ. Enzyme-linked immunosorbent assay using a commercial anti-cat IFNγ kit was performed to detect rIFNγ from Felidae, the domestic dog and cattle. Five unique rIFNγ Felidae proteins were synthesised; anti-cat IFNγ antibodies were able to bind to all five proteins, while cross-reactivity with canine and bovine rIFNγ was negligible. This suggests that anti-cat IFNγ antibodies are sufficient for detection of IFNγ across other Felidae species, namely the lion, tiger, cheetah, cougar, Iberian lynx and the Canadian lynx.
Original languageEnglish
Article number110327
JournalVeterinary Immunology and Immunopathology
Volume241
Early online date21 Sept 2021
DOIs
Publication statusE-pub ahead of print - 21 Sept 2021

Fingerprint

Dive into the research topics of 'Recognition of recombinant interferon-gamma from Felidae species by anti-cat antibodies'. Together they form a unique fingerprint.

Cite this