Reconstructing null-space policies subject to dynamic task constraints in redundant manipulators

M. Howard, S. Vijayakumar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract / Description of output

We consider the problem of direct policy learning in situations where the policies are only observable through their projections into the null-space of a set of dynamic, non-linear task constraints. We tackle the issue of deriving consistent data for the learning of such policies and make two contributions towards its solution. Firstly, we derive the conditions required to exactly reconstruct null-space policies and suggest a learning strategy based on this derivation. Secondly, we consider the case that the null-space policy is conservative and show that such a policy can be learnt more easily and robustly by learning the underlying potential function and using this as our representation of the policy.
Original languageEnglish
Title of host publicationWorkshop on Robotics and Mathematics (ROBOMAT '07), Coimbra, Portugal
Number of pages6
Publication statusPublished - 2007

Fingerprint

Dive into the research topics of 'Reconstructing null-space policies subject to dynamic task constraints in redundant manipulators'. Together they form a unique fingerprint.

Cite this