Recycling Between Cortisol and Cortisone in Human Splanchnic, Subcutaneous Adipose, and Skeletal Muscle Tissues In Vivo

Katherine A Hughes, Konstantinos N Manolopoulos, Javaid Iqbal, Nicholas L Cruden, Roland H Stimson, Rebecca M Reynolds, David E Newby, Ruth Andrew, Fredrik Karpe, Brian R Walker

Research output: Contribution to journalArticlepeer-review

Abstract

11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) is a therapeutic target in metabolic syndrome because it catalyses reductase regeneration of cortisol from cortisone in adipose and liver. 11βHSD1 can also catalyze the reverse dehydrogenase reaction in vitro (e.g., if cofactor is limited). We used stable isotope tracers to test the hypothesis that both 11βHSD1-reductase and -dehydrogenase activities occur in human metabolic tissues in vivo. 1,2-[(2)H](2)-Cortisone (d2-cortisone) was validated as a tracer for 11β-dehydrogenase activity and its inhibition by licorice. d2-Cortisone and 9,11,12,12-[(2)H](4)-cortisol (d4-cortisol) (to measure 11β-reductase activity) were coinfused and venous samples obtained from skeletal muscle, subcutaneous adipose (n = 6), and liver (n = 4). Steroids were measured by liquid chromatography-tandem mass spectrometry and arteriovenous differences adjusted for blood flow. Data are means ± SEM. 11β-Reductase and -dehydrogenase activities were detected in muscle (cortisol release 19.7 ± 4.1 pmol/100 mL/min, d3-cortisol 5.9 ± 1.8 pmol/100 mL/min, and cortisone 15.2 ± 5.8 pmol/100 mL/min) and splanchnic (cortisol 64.0 ± 11.4 nmol/min, d3-cortisol 12.9 ± 2.1 nmol/min, and cortisone 19.5 ± 2.8 nmol/min) circulations. In adipose, dehydrogenase was more readily detected than reductase (cortisone release 38.7 ± 5.8 pmol/100 g/min). Active recycling between cortisol and cortisone in metabolic tissues in vivo may facilitate dynamic control of intracellular cortisol but makes consequences of dysregulation of 11βHSD1 transcription in obesity and diabetes unpredictable. Disappointing efficacy of 11βHSD1 inhibitors in phase II studies could be explained by lack of selectivity for 11β-reductase.
Original languageEnglish
Pages (from-to)1357-1364
JournalDiabetes
Volume61
Issue number6
DOIs
Publication statusPublished - Jun 2012

Fingerprint Dive into the research topics of 'Recycling Between Cortisol and Cortisone in Human Splanchnic, Subcutaneous Adipose, and Skeletal Muscle Tissues In Vivo'. Together they form a unique fingerprint.

Cite this