Abstract / Description of output
The tumour suppressor protein p53 is a stress-activated transcription factor whose activity is required for regulating the cellular response to stress and damage. The biochemical activity of p53 as a transcription factor can be regulated by partner proteins affecting stability, nuclear transport, signalling pathways modulating phosphorylation and interactions with components of the transcriptional machinery. The key structural determinants of p53 protein that drive sequence-specific DNA binding include the core specific DNA-binding domain and the tetramerization domain. Flanking these domains are more evolutionarily divergent carboxy- and amino-terminal regulatory motifs that further modulate tetramerization and sequence-specific transactivation. This review will mainly focus on the mechanisms whereby the tetramerization domain modulates sequence-specific DNA binding and how missense point mutations in p53 protein and the activity of molecular chaperones may lead to unfolding of mutant p53 tetramers in human tumours.
Original language | English |
---|---|
Pages (from-to) | 88-95 |
Number of pages | 8 |
Journal | Cellular and Molecular Life Sciences |
Volume | 55 |
Issue number | 1 |
Publication status | Published - Jan 1999 |
Keywords / Materials (for Non-textual outputs)
- Antigens, Viral, Tumor
- DNA-Binding Proteins
- Gene Expression Regulation
- Molecular Chaperones
- Phosphorylation
- Point Mutation
- Protein Binding
- Protein Conformation
- Protein Folding
- Tumor Suppressor Protein p53