Abstract
The Renyi entropy is a generalisation of the Shannon entropy that is sensitive to the fine details of a probability distribution. We present results for the Renyi entropy of the totally asymmetric exclusion process (TASEP). We calculate explicitly an entropy whereby the squares of configuration probabilities are summed, using the matrix product formalism to map the problem to one involving a six direction lattice walk in the upper quarter plane. We derive the generating function across the whole phase diagram, using an obstinate kernel method. This gives the leading behaviour of the Renyi entropy and corrections in all phases of the TASEP. The leading behaviour is given by the result for a Bernoulli measure and we conjecture that this holds for all Renyi entropies. Within the maximal current phase the correction to the leading behaviour is logarithmic in the system size. Finally, we remark upon a special property of equilibrium systems whereby discontinuities in the Renyi entropy arise away from phase transitions, which we refer to as secondary transitions. We find no such secondary transition for this nonequilibrium system, supporting the notion that these are specific to equilibrium cases.
Original language  English 

Article number  475005 
Journal  Journal of Physics A: Mathematical and Theoretical 
Volume  50 
Issue number  47 
Early online date  27 Sep 2017 
DOIs  
Publication status  Published  1 Nov 2017 
Fingerprint
Dive into the research topics of 'Renyi entropy of the totally asymmetric exclusion process'. Together they form a unique fingerprint.Profiles

Richard Blythe, SFHEA
 School of Physics and Astronomy  Personal Chair of Complex Systems
Person: Academic: Research Active