TY - JOUR
T1 - Restricted Hematopoietic Progenitors and Erythropoiesis Require SCF from Leptin Receptor+ Niche Cells in the Bone Marrow.
AU - Comazzetto, Stefano
AU - Murphy, Malea M.
AU - Bertone, Stefano
AU - Jeffery, Elise
AU - Zhao, Zhiyu
AU - Morrison, Sean J.
PY - 2019/3/7
Y1 - 2019/3/7
N2 - Hematopoietic stem cells (HSCs) are maintained in a perivascular niche in bone marrow, in which leptin receptor+ (LepR) stromal cells and endothelial cells synthesize factors required for HSC maintenance, including stem cell factor (SCF). An important question is why LepR+ cells are one hundred times more frequent than HSCs. Here, we show that SCF from LepR+ cells is also necessary to maintain many c-kit+-restricted hematopoietic progenitors. Conditional deletion of Scf from LepR+ cells depleted common myeloid progenitors (CMPs), common lymphoid progenitors (CLPs), granulocyte-macrophage progenitors (GMPs), megakaryocyte-erythrocyte progenitors (MEPs), pre-megakaryocyte-erythrocyte progenitors (PreMegEs), and colony-forming units-erythroid (CFU-Es), as well as myeloid and erythroid blood cells. This was not caused by HSC depletion, as many other restricted progenitors were unaffected. Moreover, Scf deletion from endothelial cells depleted HSCs, but not progenitors. Early erythroid progenitors were closely associated with perisinusoidal LepR+ cells. This reveals cellular specialization within the niche: SCF from LepR+ cells is broadly required by HSCs and restricted progenitors while SCF from endothelial cells is required mainly by HSCs.
AB - Hematopoietic stem cells (HSCs) are maintained in a perivascular niche in bone marrow, in which leptin receptor+ (LepR) stromal cells and endothelial cells synthesize factors required for HSC maintenance, including stem cell factor (SCF). An important question is why LepR+ cells are one hundred times more frequent than HSCs. Here, we show that SCF from LepR+ cells is also necessary to maintain many c-kit+-restricted hematopoietic progenitors. Conditional deletion of Scf from LepR+ cells depleted common myeloid progenitors (CMPs), common lymphoid progenitors (CLPs), granulocyte-macrophage progenitors (GMPs), megakaryocyte-erythrocyte progenitors (MEPs), pre-megakaryocyte-erythrocyte progenitors (PreMegEs), and colony-forming units-erythroid (CFU-Es), as well as myeloid and erythroid blood cells. This was not caused by HSC depletion, as many other restricted progenitors were unaffected. Moreover, Scf deletion from endothelial cells depleted HSCs, but not progenitors. Early erythroid progenitors were closely associated with perisinusoidal LepR+ cells. This reveals cellular specialization within the niche: SCF from LepR+ cells is broadly required by HSCs and restricted progenitors while SCF from endothelial cells is required mainly by HSCs.
UR - http://europepmc.org/abstract/med/30661958
U2 - 10.1016/j.stem.2018.11.022
DO - 10.1016/j.stem.2018.11.022
M3 - Article
C2 - 30661958
SN - 1934-5909
VL - 24
SP - 477
EP - 486
JO - Cell Stem Cell
JF - Cell Stem Cell
IS - 3
ER -