Review of lattice results concerning low-energy particle physics

S. Aoki, Y. Aoki, D. Becirevic, C. Bernard, T. Blum, G. Colangelo, M. Della Morte, P. Dimopoulos, S. Dürr, H. Fukaya, M. Golterman, Steven Gottlieb, S. Hashimoto, U. M. Heller, R. Horsley, A. Jüttner, T. Kaneko, L. Lellouch, H. Leutwyler, C. -J. D. LinV. Lubicz, E. Lunghi, R. Mawhinney, T. Onogi, C. Pena, C. T. Sachrajda, S. R. Sharpe, S. Simula, R. Sommer, A. Vladikas, U. Wenger, H. Wittig

Research output: Contribution to journalArticlepeer-review

Abstract

We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in the semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory. We review the determination of the BK parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for mc and mb (also new compared to the previous review), as well as those for D- and B-meson decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant alpha_s.
Original languageEnglish
Article number112
JournalEuropean Physical Journal C
Volume2017
Issue number77
DOIs
Publication statusPublished - 17 Feb 2017

Keywords

  • hep-lat
  • hep-ph

Fingerprint Dive into the research topics of 'Review of lattice results concerning low-energy particle physics'. Together they form a unique fingerprint.

Cite this