Abstract
In situ synchrotron powder x-ray diffraction (PXRD) study was conducted on sodium and potassium tetrafluoroborate (NaBF4 and KBF4) to elucidate structural changes across solid-solid phase transitions over multiple heating-cooling cycles. The phase transition temperatures from diffraction measurements are consistent with the differential scanning calorimetry data (~240 °C for NaBF4 and ~290 °C for KBF4). The crystal structure of the high-temperature (HT) NaBF4 phase has been determined from synchrotron PXRD data. The HT disordered
phase of NaBF4 crystallizes in the hexagonal, space group P63/mmc (No. 194) with a = 4.98936(2) Å, c = 7.73464(4) Å, V = 166.748(2) Å3, and Z = 2 at 250 °C. Density functional theory molecular dynamics (MD) calculations imply that the P63/mmc is indeed a stable structure for rotational NaBF4. MD simulations reproduce experimental phase sequence upon heating and indicates that F atoms are markedly more mobile than K and B atoms in the disordered state. Thermal expansion coefficients for both phases were determined from high precision lattice parameters at elevated temperatures, as obtained from Rietveld refinement of PXRD data. Interestingly for the HT-phase of NaBF4, the structure (upon heating) contracts slightly in the a-b plane but expands in the c direction such that overall thermal expansion is positive. Thermal conductivity at room temperature were measured and the values are 0.8-1.0 W.m-1K-1 for NaBF4 and 0.55-0.65 W.m-1K-1 for KBF4. The thermal conductivity and diffusivity showed a gradual decrease up to the transition temperature and then rose slightly. Both materials show good thermal and structural stabilities over multiple heating/cooling cycles.
phase of NaBF4 crystallizes in the hexagonal, space group P63/mmc (No. 194) with a = 4.98936(2) Å, c = 7.73464(4) Å, V = 166.748(2) Å3, and Z = 2 at 250 °C. Density functional theory molecular dynamics (MD) calculations imply that the P63/mmc is indeed a stable structure for rotational NaBF4. MD simulations reproduce experimental phase sequence upon heating and indicates that F atoms are markedly more mobile than K and B atoms in the disordered state. Thermal expansion coefficients for both phases were determined from high precision lattice parameters at elevated temperatures, as obtained from Rietveld refinement of PXRD data. Interestingly for the HT-phase of NaBF4, the structure (upon heating) contracts slightly in the a-b plane but expands in the c direction such that overall thermal expansion is positive. Thermal conductivity at room temperature were measured and the values are 0.8-1.0 W.m-1K-1 for NaBF4 and 0.55-0.65 W.m-1K-1 for KBF4. The thermal conductivity and diffusivity showed a gradual decrease up to the transition temperature and then rose slightly. Both materials show good thermal and structural stabilities over multiple heating/cooling cycles.
Original language | English |
---|---|
Pages (from-to) | 1238-1248 |
Number of pages | 11 |
Journal | Chemistry of Materials |
Volume | 36 |
Issue number | 3 |
Early online date | 31 Jan 2024 |
DOIs | |
Publication status | Published - 13 Feb 2024 |