RRT-CoLearn: Towards Kinodynamic Planning Without Numerical Trajectory Optimization

Wouter Wolfslag, Mukunda Bharatheesha, Thomas Moerland, Martijn Wisse

Research output: Contribution to journalArticlepeer-review

Abstract

Sampling-based kinodynamic planners, such as rapidly-exploring random trees (RRTs), pose two fundamental challenges: computing a reliable (pseudo-)metric for the distance between two random nodes, and computing a steering input to connect the nodes. The core of these challenges is a two point boundary value problem, known to be NP-hard. Recently, the distance metric has been approximated using supervised learning, reducing computation time drastically. Previous work on such learning RRTs use direct optimal control to generate the data for supervised learning. This letter proposes to use indirect optimal control instead, because it provides two benefits: it reduces the computational effort to generate the data, and it provides a low-dimensional parametrization of the action space. The latter allows us to learn both the distance metric and the steering input. This eliminates the need for a local planner in learning RRTs. Experimental results on a pendulum swing up show tenfold speed-up in both the offline data generation and the online planning time.
Index Terms—Motion and path planning, optimization and optimal control, learning and adaptive systems.
Original languageEnglish
Pages (from-to)1655-1662
Number of pages8
JournalIEEE Robotics and Automation Letters
Volume3
Issue number3
Early online date2 Feb 2018
DOIs
Publication statusPublished - Jul 2018

Fingerprint

Dive into the research topics of 'RRT-CoLearn: Towards Kinodynamic Planning Without Numerical Trajectory Optimization'. Together they form a unique fingerprint.

Cite this